2 research outputs found

    The boundary Riemann solver coming from the real vanishing viscosity approximation

    Full text link
    We study a family of initial boundary value problems associated to mixed hyperbolic-parabolic systems: v^{\epsilon} _t + A (v^{\epsilon}, \epsilon v^{\epsilon}_x ) v^{\epsilon}_x = \epsilon B (v^{\epsilon} ) v^{\epsilon}_{xx} The conservative case is, in particular, included in the previous formulation. We suppose that the solutions vϵv^{\epsilon} to these problems converge to a unique limit. Also, it is assumed smallness of the total variation and other technical hypotheses and it is provided a complete characterization of the limit. The most interesting points are the following two. First, the boundary characteristic case is considered, i.e. one eigenvalue of AA can be 00. Second, we take into account the possibility that BB is not invertible. To deal with this case, we take as hypotheses conditions that were introduced by Kawashima and Shizuta relying on physically meaningful examples. We also introduce a new condition of block linear degeneracy. We prove that, if it is not satisfied, then pathological behaviours may occur.Comment: 84 pages, 6 figures. Text changes in Sections 1 and 3.2.3. Added Section 3.1.2. Minor changes in other section
    corecore