45 research outputs found
Exploring the Bimodal Solar System via Sample Return from the Main Asteroid Belt: The Case for Revisiting Ceres
Abstract: Sample return from a main-belt asteroid has not yet been attempted, but appears technologically feasible. While the cost implications are significant, the scientific case for such a mission appears overwhelming. As suggested by the “Grand Tack” model, the structure of the main belt was likely forged during the earliest stages of Solar System evolution in response to migration of the giant planets. Returning samples from the main belt has the potential to test such planet migration models and the related geochemical and isotopic concept of a bimodal Solar System. Isotopic studies demonstrate distinct compositional differences between samples believed to be derived from the outer Solar System (CC or carbonaceous chondrite group) and those that are thought to be derived from the inner Solar System (NC or non-carbonaceous group). These two groups are separated on relevant isotopic variation diagrams by a clear compositional gap. The interface between these two regions appears to be broadly coincident with the present location of the asteroid belt, which contains material derived from both groups. The Hayabusa mission to near-Earth asteroid (NEA) (25143) Itokawa has shown what can be learned from a sample-return mission to an asteroid, even with a very small amount of sample. One scenario for main-belt sample return involves a spacecraft launching a projectile that strikes an object and flying through the debris cloud, which would potentially allow multiple bodies to be sampled if a number of projectiles are used on different asteroids. Another scenario is the more traditional method of landing on an asteroid to obtain the sample. A significant range of main-belt asteroids are available as targets for a sample-return mission and such a mission would represent a first step in mineralogically and isotopically mapping the asteroid belt. We argue that a sample-return mission to the asteroid belt does not necessarily have to return material from both the NC and CC groups to viably test the bimodal Solar System paradigm, as material from the NC group is already abundantly available for study. Instead, there is overwhelming evidence that we have a very incomplete suite of CC-related samples. Based on our analysis, we advocate a dedicated sample-return mission to the dwarf planet (1) Ceres as the best means of further exploring inherent Solar System variation. Ceres is an ice-rich world that may be a displaced trans-Neptunian object. We almost certainly do not have any meteorites that closely resemble material that would be brought back from Ceres. The rich heritage of data acquired by the Dawn mission makes a sample-return mission from Ceres logistically feasible at a realistic cost. No other potential main-belt target is capable of providing as much insight into the early Solar System as Ceres. Such a mission should be given the highest priority by the international scientific community
Recommended from our members
Hypervelocity Impact Experiments in Iron‐Nickel Ingots and Iron Meteorites: Implications for the NASA Psyche Mission
The National Aeronautics and Space Administration (NASA) Psyche mission will visit the 226-km diameter main belt asteroid (16) Psyche, our first opportunity to visit a metal-rich object at close range. The unique and poorly understood nature of Psyche offers a challenge to the mission as we have little understanding of the surface morphology and composition. It is commonly accepted that the main evolutionary process for asteroid surfaces is impact cratering. While a considerable body of literature is available on collisions on rocky/icy objects, less work is available for metallic targets with compositions relevant to Psyche. Here we present a suite of impact experiments performed at the NASA Ames Vertical Gun Range facility on several types of iron meteorites and foundry-cast ingots that have similar Fe-Ni compositions as the iron meteorites. Our experiments were designed to better understand crater formation (e.g., size, depth), over a range of impact conditions, including target temperature and composition. We find that the target strength, as inferred from crater sizes, ranges from 700 to 1,300 MPa. Target temperature has measurable effects on strength, with cooled targets typically 10-20% stronger. Crater morphologies are characterized by sharp, raised rims and deep cavities. Further, we derive broad implications for Psyche's collisional evolution, in light of available low resolution shape models. We find that the number of large craters (>50 km) is particularly diagnostic for the overall bulk strength of Psyche. If confirmed, the number of putative large craters may indicate that Psyche's bulk strength is significantly reduced compared to that of intact iron meteorites. Plain Language Summary Many iron meteorites are thought to be remnants of the cores of melted asteroids. Some cores may have been exposed by collisions during the earliest days of Solar System history, with a few survivors possibly found today in the main asteroid belt. National Aeronautics and Space Administration (NASA) Psyche mission will be the first spacecraft to visit asteroid (16) Psyche, an object thought to be representative of these metallic asteroids. Impacts onto (16) Psyche in the past may therefore be able to tell us about the history and nature of this body. To this end, we performed high-speed impact experiments into metallic targets in order to understand how crater formation differs from rocky bodies. These experiments revealed that impact craters into metal targets are deeper and have sharper rims than on their rocky counterparts. These results will be crucial for interpreting both the bulk properties of Psyche's interior and the modification of Psyche's surface when the Psyche mission reaches its target.6 month embargo; first published online 24 October 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]