1,577 research outputs found

    Comparison of equations for the calculation of LDL-cholesterol in hospitalized patients

    Get PDF
    BACKGROUND : The Friedewald equation is widely used to calculate LDL-C for cardiovascular risk prediction but is less accurate with comorbidities and extreme lipid values. Several novel formulae have been reported to outperform the Friedewald formula. METHODS : We examined 14,219 lipid profiles and evaluated four formulae (Friedewald, Chen, de Cordova, Hattori) and compared these to direct measurement of LDL-C across various triglyceride (TG), total cholesterol (TC) and HDL-cholesterol (HDL-C) ranges using Beckman reagents and instruments. Linear regression and ROC analysis were performed. RESULTS : The de Cordova formula showed a high correlation with directly measured LDL-C (r= 0.90, P b 0.001), comparable to the Friedewald calculated values for directly measured LDL-C (r = 0.95, P b 0.001). The de Cordova formula was favorable in some ranges of HDL, TC and the lowest TG range (r = 0.97, P b 0.001) but performed least well in comparison with the three other LDL-C calculations (AUC=0.8331), demonstrating inconsistent bias. The Chen formula performed better than Friedewald (AUC = 0.9049). The Hattori formula outperformed all formulae including Friedewald over various ranges of lipid values (AUC= 0.9097). CONCLUSIONS : We observe favorable correlations of the de Cordova formula with Friedewald at low TG values. However, the Hattori formula appears to be best for application in hospitalized patients, even at extreme lipid values.http://www.elsevier.com/locate/clinchim2016-04-30hb201

    Michaelis-Menten Dynamics in Complex Heterogeneous Networks

    Full text link
    Biological networks have been recently found to exhibit many topological properties of the so-called complex networks. It has been reported that they are, in general, both highly skewed and directed. In this paper, we report on the dynamics of a Michaelis-Menten like model when the topological features of the underlying network resemble those of real biological networks. Specifically, instead of using a random graph topology, we deal with a complex heterogeneous network characterized by a power-law degree distribution coupled to a continuous dynamics for each network's component. The dynamics of the model is very rich and stationary, periodic and chaotic states are observed upon variation of the model's parameters. We characterize these states numerically and report on several quantities such as the system's phase diagram and size distributions of clusters of stationary, periodic and chaotic nodes. The results are discussed in view of recent debate about the ubiquity of complex networks in nature and on the basis of several biological processes that can be well described by the dynamics studied.Comment: Paper enlarged and modified, including the title. Some problems with the pdf were detected in the past. If they persist, please ask for the pdf by e-mailing yamir(at_no_spam)unizar.es. Version to appear in Physica

    Welfare conditions of donkeys in Europe: Initial outcomes from on-farm assessment

    Get PDF
    This paper is a baseline study to present the initial outcomes of data collected in a sample of EU donkey farms using the AWIN welfare assessment protocol for donkeys, comprehensive of 22 valid, reliable and feasible animal-based indicators. A total of 20 donkey facilities (N = 12 in Italy and N = 8 in United Kingdom) were visited and 278 donkeys of different breed, aged 2-45 years,were assessed. Three assessors underwent a common training period to learn how to perform and score all the indicators included in the protocol. Data was collected using digitalized systems and downloaded to a database. A descriptive statistic for each welfare indicator was calculated. The authors found recurrent issues: 25% of donkeys were moderately over weight; although most of the assessed animals had good quality hoof care, 15.16% of them presented some signs of neglect, such as overgrowth and/or incorrect trimming; 18.05% of donkeys showed an avoidance reaction to an approaching human in the avoidance distance test. The protocol has proven to be applicable in different management conditions and for donkeys of different attitude

    Understanding the Observed Evolution of the Galaxy Luminosity Function from z=6-10 in the Context of Hierarchical Structure Formation

    Full text link
    Recent observations of the Lyman-break galaxy (LBG) luminosity function (LF) from z~6-10 show a steep decline in abundance with increasing redshift. However, the LF is a convolution of the mass function of dark matter halos (HMF)--which also declines sharply over this redshift range--and the galaxy-formation physics that maps halo mass to galaxy luminosity. We consider the strong observed evolution in the LF from z~6-10 in this context and determine whether it can be explained solely by the behavior of the HMF. From z~6-8, we find a residual change in the physics of galaxy formation corresponding to a ~0.5 dex increase in the average luminosity of a halo of fixed mass. On the other hand, our analysis of recent LF measurements at z~10 shows that the paucity of detected galaxies is consistent with almost no change in the average luminosity at fixed halo mass from z~8. The LF slope also constrains the variation about this mean such that the luminosity of galaxies hosted by halos of the same mass are all within about an order-of-magnitude of each other. We show that these results are well-described by a simple model of galaxy formation in which cold-flow accretion is balanced by star formation and momentum-driven outflows. If galaxy formation proceeds in halos with masses down to 10^8 Msun, then such a model predicts that LBGs at z~10 should be able to maintain an ionized intergalactic medium as long as the ratio of the clumping factor to the ionizing escape fraction is C/f_esc < 10.Comment: 15 pages, 2 figures; results unchanged; accepted by JCA

    3D MHD Flux Emergence Experiments: Idealized models and coronal interactions

    Full text link
    This paper reviews some of the many 3D numerical experiments of the emergence of magnetic fields from the solar interior and the subsequent interaction with the pre-existing coronal magnetic field. The models described here are idealized, in the sense that the internal energy equation only involves the adiabatic, Ohmic and viscous shock heating terms. However, provided the main aim is to investigate the dynamical evolution, this is adequate. Many interesting observational phenomena are explained by these models in a self-consistent manner.Comment: Review article, accepted for publication in Solar Physic

    Effect of the Surface on the Electron Quantum Size Levels and Electron g-Factor in Spherical Semiconductor Nanocrystals

    Full text link
    The structure of the electron quantum size levels in spherical nanocrystals is studied in the framework of an eight--band effective mass model at zero and weak magnetic fields. The effect of the nanocrystal surface is modeled through the boundary condition imposed on the envelope wave function at the surface. We show that the spin--orbit splitting of the valence band leads to the surface--induced spin--orbit splitting of the excited conduction band states and to the additional surface--induced magnetic moment for electrons in bare nanocrystals. This additional magnetic moment manifests itself in a nonzero surface contribution to the linear Zeeman splitting of all quantum size energy levels including the ground 1S electron state. The fitting of the size dependence of the ground state electron g factor in CdSe nanocrystals has allowed us to determine the appropriate surface parameter of the boundary conditions. The structure of the excited electron states is considered in the limits of weak and strong magnetic fields.Comment: 11 pages, 4 figures, submitted to Phys. Rev.

    Visual processing deficits in 22q11.2 Deletion Syndrome.

    Get PDF
    Carriers of the rare 22q11.2 microdeletion present with a high percentage of positive and negative symptoms and a high genetic risk for schizophrenia. Visual processing impairments have been characterized in schizophrenia, but less so in 22q11.2 Deletion Syndrome (DS). Here, we focus on visual processing using high-density EEG and source imaging in 22q11.2DS participants (N = 25) and healthy controls (N = 26) with an illusory contour discrimination task. Significant differences between groups emerged at early and late stages of visual processing. In 22q11.2DS, we first observed reduced amplitudes over occipital channels and reduced source activations within dorsal and ventral visual stream areas during the P1 (100-125 ms) and within ventral visual cortex during the N1 (150-170 ms) visual evoked components. During a later window implicated in visual completion (240-285 ms), we observed an increase in global amplitudes in 22q11.2DS. The increased surface amplitudes for illusory contours at this window were inversely correlated with positive subscales of prodromal symptoms in 22q11.2DS. The reduced activity of ventral and dorsal visual areas during early stages points to an impairment in visual processing seen both in schizophrenia and 22q11.2DS. During intervals related to perceptual closure, the inverse correlation of high amplitudes with positive symptoms suggests that participants with 22q11.2DS who show an increased brain response to illusory contours during the relevant window for contour processing have less psychotic symptoms and might thus be at a reduced prodromal risk for schizophrenia

    Differential influences of early growth and social factors on young children's cognitive performance in four low-and-middle-income birth cohorts (Brazil, Guatemala, Philippines, and South Africa)

    Get PDF
    Background: Studies relating childhood cognitive development to poor linear growth seldom take adequate account of social conditions related to both, leading to a focus on nutrition interventions. We aimed to assess the roles of both biological and social conditions in determining early childhood cognition, mediated by birthweight and early linear growth. Methods: After exploratory structural equation modelling to identify determining factors, we tested direct and indirect paths to cognitive performance through birthweight and child height-for-age at 2 years, assessed between 4 and 8.5 years of age among 2448 children in four birth cohort studies in low-and-middle-income countries (Brazil, Guatemala, Philippines and South Africa). Determinants were compared across the cohorts. Findings: Three factors yielded excellent fit, comprising birth endowment (primarily maternal age and birth order), household resources (crowding, dependency) and parental capacity (parental education). We estimated their strength together with maternal height in determining cognitive performance. Percentage shares of total effects of the four determinants show a marked transition from mainly biological determinants of birth weight (birth endowment 34%) and maternal height (30%) compared to household resources (25%) and parental capacity (11%), through largely economic determinants of height at 2 years (household resources (60%) to cognitive performance being predominantly determined by parental capacity (64%) followed by household resources (29%). The largely biological factor, birth endowment (maternal age and birth order) contributed only 7% to childhood cognitive performance and maternal height was insignificant. In summary, the combined share of social total effects (household resources and parental capacity) rises from 36∙2% on birth weight, to 78∙2% on height for age at 24 m, and 93∙4% on cognitive functioning. Interpretation: Across four low- and middle-income contexts, cognition in childhood is influenced more by the parental capacity of families and their economic resources than by birth weight and early linear growth. Improving children's cognitive functioning requires multi-sectoral interventions to improve parental education and enhance their economic wellbeing, interventions that are known to improve also early childhood growth

    Lubricating Bacteria Model for Branching growth of Bacterial Colonies

    Full text link
    Various bacterial strains (e.g. strains belonging to the genera Bacillus, Paenibacillus, Serratia and Salmonella) exhibit colonial branching patterns during growth on poor semi-solid substrates. These patterns reflect the bacterial cooperative self-organization. Central part of the cooperation is the collective formation of lubricant on top of the agar which enables the bacteria to swim. Hence it provides the colony means to advance towards the food. One method of modeling the colonial development is via coupled reaction-diffusion equations which describe the time evolution of the bacterial density and the concentrations of the relevant chemical fields. This idea has been pursued by a number of groups. Here we present an additional model which specifically includes an evolution equation for the lubricant excreted by the bacteria. We show that when the diffusion of the fluid is governed by nonlinear diffusion coefficient branching patterns evolves. We study the effect of the rates of emission and decomposition of the lubricant fluid on the observed patterns. The results are compared with experimental observations. We also include fields of chemotactic agents and food chemotaxis and conclude that these features are needed in order to explain the observations.Comment: 1 latex file, 16 jpeg files, submitted to Phys. Rev.
    • 

    corecore