560 research outputs found
Nuclear shadowing at low Q^2
We re-examine the role of vector meson dominance in nuclear shadowing at low
Q^2. We find that models which incorporate both vector meson and partonic
mechanisms are consistent with both the magnitude and the Q^2 slope of the
shadowing data.Comment: 7 pages, 2 figures; to appear in Phys. Rev.
Determination of nuclear parton distributions
Parametrization of nuclear parton distributions is investigated in the
leading order of alpha_s. The parton distributions are provided at Q^2=1 GeV^2
with a number of parameters, which are determined by a chi^2 analysis of the
data on nuclear structure functions. Quadratic or cubic functional form is
assumed for the initial distributions. Although valence quark distributions in
the medium x region are relatively well determined, the small x distributions
depend slightly on the assumed functional form. It is difficult to determine
the antiquark distributions at medium x and gluon distributions. From the
analysis, we propose parton distributions at Q^2=1 GeV^2 for nuclei from
deuteron to heavy ones with the mass number A~208. They are provided either
analytical expressions or computer subroutines for practical usage. Our studies
should be important for understanding the physics mechanism of the nuclear
modification and also for applications to heavy-ion reactions. This kind of
nuclear parametrization should also affect existing parametrization studies in
the nucleon because "nuclear" data are partially used for obtaining the optimum
distributions in the "nucleon".Comment: 16 pages, REVTeX4b5, revtex4.cls, url.sty, natbib.sty, 10pt.rtx,
aps.rtx, revsymb.sty, 21 eps figures. Submitted for publication. Computer
codes for the nuclear parton distributions could be obtained from
http://www-hs.phys.saga-u.ac.jp Email: [email protected]
The Role of Color Neutrality in Nuclear Physics--Modifications of Nucleonic Wave Functions
The influence of the nuclear medium upon the internal structure of a
composite nucleon is examined. The interaction with the medium is assumed to
depend on the relative distances between the quarks in the nucleon consistent
with the notion of color neutrality, and to be proportional to the nucleon
density. In the resulting description the nucleon in matter is a superposition
of the ground state (free nucleon) and radial excitations. The effects of the
nuclear medium on the electromagnetic and weak nucleon form factors, and the
nucleon structure function are computed using a light-front constituent quark
model. Further experimental consequences are examined by considering the
electromagnetic nuclear response functions. The effects of color neutrality
supply small but significant corrections to predictions of observables.Comment: 37 pages, postscript figures available on request to
[email protected]
Hadronic properties of the S_{11}(1535) studied by electroproduction off the deuteron
Properties of excited baryonic states are investigated in the context of
electroproduction of baryon resonances off the deuteron. In particular, the
hadronic radii and the compositeness of baryon resonances are studied for
kinematic situations in which their hadronic reinteraction is the dominant
contribution. Specifically, we study the reaction at for kinematics in which the produced hadronic state reinteracts
predominantly with the spectator nucleon. A comparison of constituent quark
model and effective chiral Lagrangian calculations of the shows
substantial sensitivity to the structure of the produced resonance.Comment: 24 pages, 5 figure
Nuclear transparency from quasielastic A(e,e'p) reactions uo to Q^2=8.1 (GeV/c)^2
The quasielastic (e,ep) reaction was studied on targets of
deuterium, carbon, and iron up to a value of momentum transfer of 8.1
(GeV/c). A nuclear transparency was determined by comparing the data to
calculations in the Plane-Wave Impulse Approximation. The dependence of the
nuclear transparency on and the mass number was investigated in a
search for the onset of the Color Transparency phenomenon. We find no evidence
for the onset of Color Transparency within our range of . A fit to the
world's nuclear transparency data reflects the energy dependence of the free
proton-nucleon cross section.Comment: 11 pages, 6 figure
Deeply virtual electroproduction of photons and mesons on the nucleon : leading order amplitudes and power corrections
We estimate the leading order amplitudes for exclusive photon and meson
electroproduction reactions at large Q^2 in the valence region in terms of
skewed quark distributions. As experimental investigations can currently only
be envisaged at moderate values of Q^2, we estimate power corrections due to
the intrinsic transverse momentum of the partons in the meson wavefunction and
in the nucleon. To this aim the skewed parton distribution formalism is
generalized so as to include the parton intrinsic transverse momentum
dependence. Furthermore, for the meson electroproduction reactions, we
calculate the soft overlap type contributions and compare with the leading
order amplitudes. We give first estimates for these different power corrections
in kinematics which are relevant for experiments in the near future.Comment: 59 pages, 21 figure
Shadowing in Inelastic Scattering of Muons on Carbon, Calcium and Lead at Low XBj
Nuclear shadowing is observed in the per-nucleon cross-sections of positive
muons on carbon, calcium and lead as compared to deuterium. The data were taken
by Fermilab experiment E665 using inelastically scattered muons of mean
incident momentum 470 GeV/c. Cross-section ratios are presented in the
kinematic region 0.0001 < XBj <0.56 and 0.1 < Q**2 < 80 GeVc. The data are
consistent with no significant nu or Q**2 dependence at fixed XBj. As XBj
decreases, the size of the shadowing effect, as well as its A dependence, are
found to approach the corresponding measurements in photoproduction.Comment: 22 pages, incl. 6 figures, to be published in Z. Phys.
Longitudinal quark polarization in transversely polarized nucleons.
Accounting for transverse momenta of the quarks, a longitudinal quark spin asymmetry exists in a transversely polarized nucleon target. The relevant leading quark distribution g_{1T}(x,k_T^2) can be measured in the semi-inclusive deep-inelastic scattering. The average k_T^2 weighted distribution function g^{(1)}_{1T} can be obtained directly from the inclusive measurement of g_2
Measurements of the observed cross sections for exclusive light hadrons containing at , 3.650 and 3.6648 GeV
By analyzing the data sets of 17.3, 6.5 and 1.0 pb taken,
respectively, at , 3.650 and 3.6648 GeV with the BES-II
detector at the BEPC collider, we measure the observed cross sections for
, , ,
and at the three energy
points. Based on these cross sections we set the upper limits on the observed
cross sections and the branching fractions for decay into these
final states at 90% C.L..Comment: 7 pages, 2 figure
- …