402 research outputs found
A three-dimensional multidimensional gas-kinetic scheme for the Navier-Stokes equations under gravitational fields
This paper extends the gas-kinetic scheme for one-dimensional inviscid
shallow water equations (J. Comput. Phys. 178 (2002), pp. 533-562) to
multidimensional gas dynamic equations under gravitational fields. Four
important issues in the construction of a well-balanced scheme for gas dynamic
equations are addressed. First, the inclusion of the gravitational source term
into the flux function is necessary. Second, to achieve second-order accuracy
of a well-balanced scheme, the Chapman-Enskog expansion of the Boltzmann
equation with the inclusion of the external force term is used. Third, to avoid
artificial heating in an isolated system under a gravitational field, the
source term treatment inside each cell has to be evaluated consistently with
the flux evaluation at the cell interface. Fourth, the multidimensional
approach with the inclusion of tangential gradients in two-dimensional and
three-dimensional cases becomes important in order to maintain the accuracy of
the scheme. Many numerical examples are used to validate the above issues,
which include the comparison between the solutions from the current scheme and
the Strang splitting method. The methodology developed in this paper can also
be applied to other systems, such as semi-conductor device simulations under
electric fields.Comment: The name of first author was misspelled as C.T.Tian in the published
paper. 35 pages,9 figure
Review and application of Artificial Neural Networks models in reliability analysis of steel structures
This paper presents a survey on the development and use of Artificial Neural Network (ANN) models in structural reliability analysis. The survey identifies the different types of ANNs, the methods of structural reliability assessment that are typically used, the techniques proposed for ANN training set improvement and also some applications of ANN approximations to structural design and optimization problems. ANN models are then used in the reliability analysis of a ship stiffened panel subjected to uniaxial compression loads induced by hull girder vertical bending moment, for which the collapse strength is obtained by means of nonlinear finite element analysis (FEA). The approaches adopted combine the use of adaptive ANN models to approximate directly the limit state function with Monte Carlo simulation (MCS), first order reliability methods (FORM) and MCS with importance sampling (IS), for reliability assessment. A comprehensive comparison of the predictions of the different reliability methods with ANN based LSFs and classical LSF evaluation linked to the FEA is provided
Adsorption of mono- and multivalent cat- and anions on DNA molecules
Adsorption of monovalent and multivalent cat- and anions on a deoxyribose
nucleic acid (DNA) molecule from a salt solution is investigated by computer
simulation. The ions are modelled as charged hard spheres, the DNA molecule as
a point charge pattern following the double-helical phosphate strands. The
geometrical shape of the DNA molecules is modelled on different levels ranging
from a simple cylindrical shape to structured models which include the major
and minor grooves between the phosphate strands. The densities of the ions
adsorbed on the phosphate strands, in the major and in the minor grooves are
calculated. First, we find that the adsorption pattern on the DNA surface
depends strongly on its geometrical shape: counterions adsorb preferentially
along the phosphate strands for a cylindrical model shape, but in the minor
groove for a geometrically structured model. Second, we find that an addition
of monovalent salt ions results in an increase of the charge density in the
minor groove while the total charge density of ions adsorbed in the major
groove stays unchanged. The adsorbed ion densities are highly structured along
the minor groove while they are almost smeared along the major groove.
Furthermore, for a fixed amount of added salt, the major groove cationic charge
is independent on the counterion valency. For increasing salt concentration the
major groove is neutralized while the total charge adsorbed in the minor groove
is constant. DNA overcharging is detected for multivalent salt. Simulations for
a larger ion radii, which mimic the effect of the ion hydration, indicate an
increased adsorbtion of cations in the major groove.Comment: 34 pages with 14 figure
Role of spdef in the regulation of muc5b expression in the airways of naive and mucoobstructed mice
Understanding how expression of airway secretory mucins MUC5B and MUC5AC is regulated in health and disease is important to elucidating the pathogenesis of mucoobstructive respiratory diseases. The transcription factor SPDEF (sterile a-motif pointed domain epithelial specific transcription factor) is a key regulator of MUC5AC, but its role in regulating MUC5B in health and in mucoobstructive lung diseases is unknown. Characterization of Spdef-deficient mice upper and lower airways demonstrated region-specific, Spdef-dependent regulation of basal Muc5b expression. Neonatal Spdef-deficient mice exhibited reductions in BAL Muc5ac and Muc5b. Adult Spdef-deficient mice partially phenocopied Muc5b-deficient mice as they exhibited reduced Muc5b in nasopharyngeal and airway epithelia but not in olfactory Bowman glands, 75% incidence of nasopharyngeal hair/mucus plugs, and mild bacterial otitis media, without defective mucociliary clearance in the nasopharynx. In contrast, tracheal mucociliary clearance was reduced in Spdef-deficient mice in the absence of lung disease. To evaluate the role of Spdef in the development and persistence of Muc5b-predominant mucoobstructive lung disease, Spdef-deficient mice were crossed with Scnn1b-transgenic (Scnn1b-Tg) mice, which exhibit airway surface dehydration-induced airway mucus obstruction and inflammation. Spdef-deficient Scnn1b-Tg mice exhibited reduced Muc5ac, but not Muc5b, expression and BAL content. Airway mucus obstruction was not decreased in Spdef-deficient Scnn1b-Tg mice, consistent with Muc5b-dominant Scnn1b disease, but increased airway neutrophilia was observed compared with Spdef-sufficient Scnn1b-Tg mice. Collectively, these results indicate that Spdef regulates baseline Muc5b expression in respiratory epithelia but does not contribute to Muc5b regulation in a mouse model of Muc5b-predominant mucus obstruction caused by airway dehydration
A Framework for Verifying Data-Centric Protocols
International audienceData centric languages, such as recursive rule based languages, have been proposed to program distributed applications over networks. They simplify greatly the code, while still admitting efficient distributed execution. We show that they also provide a promising approach to the verification of distributed protocols, thanks to their data centric orientation, which allows us to explicitly handle global structures such as the topology of the network. We consider a framework using an original formalization in the Coq proof assistant of a distributed computation model based on message passing with either synchronous or asynchronous behavior. The declarative rules of the Netlog language for specifying distributed protocols and the virtual machines for evaluating these rules are encoded in Coq as well. We consider as a case study tree protocols, and show how this framework enables us to formally verify them in both the asynchronous and synchronous setting
Single Spin Asymmetry in Polarized Proton-Proton Elastic Scattering at GeV
We report a high precision measurement of the transverse single spin
asymmetry at the center of mass energy GeV in elastic
proton-proton scattering by the STAR experiment at RHIC. The was measured
in the four-momentum transfer squared range \GeVcSq, the region of a significant interference between the
electromagnetic and hadronic scattering amplitudes. The measured values of
and its -dependence are consistent with a vanishing hadronic spin-flip
amplitude, thus providing strong constraints on the ratio of the single
spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated
by the Pomeron amplitude at this , we conclude that this measurement
addresses the question about the presence of a hadronic spin flip due to the
Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure
Kaon Production and Kaon to Pion Ratio in Au+Au Collisions at \snn=130 GeV
Mid-rapidity transverse mass spectra and multiplicity densities of charged
and neutral kaons are reported for Au+Au collisions at \snn=130 GeV at RHIC.
The spectra are exponential in transverse mass, with an inverse slope of about
280 MeV in central collisions. The multiplicity densities for these particles
scale with the negative hadron pseudo-rapidity density. The charged kaon to
pion ratios are and
for the most central collisions. The ratio is lower than the same
ratio observed at the SPS while the is higher than the SPS result.
Both ratios are enhanced by about 50% relative to p+p and +p
collision data at similar energies.Comment: 6 pages, 3 figures, 1 tabl
Purple non‐sulphur bacteria and plant production: benefits for fertilization, stress resistance and the environment
Purple non-sulphur bacteria (PNSB) are phototrophic microorganisms, which increasingly gain attention in plant production due to their ability to produce and accumulate high-value compounds that are benefi- cial for plant growth. Remarkable features of PNSB include the accumulation of polyphosphate, the pro- duction of pigments and vitamins and the production of plant growth-promoting substances (PGPSs). Scattered case studies on the application of PNSB for plant cultivation have been reported for decades, yet a comprehensive overview is lacking. This review highlights the potential of using PNSB in plant pro- duction, with emphasis on three key performanceindicators (KPIs): fertilization, resistance to stress (biotic and abiotic) and environmental benefits. PNSB have the potential to enhance plant growth performance, increase the yield and quality of edible plant biomass, boost the resistance to environmental stresses, bioremediate heavy metals and mitigate greenhouse gas emissions. Here, the mechanisms responsible for these attributes are discussed. A dis- tinction is made between the use of living and dead PNSB cells, where critical interpretation of existing literature revealed the better performance of living cells. Finally, this review presents research gaps that remain yet to be elucidated and proposes a roadmap for future research and implementation paving the way for a more sustainable crop production
Strategies for Controlled Placement of Nanoscale Building Blocks
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
- …