19 research outputs found
Influenza A virus causes maternal and fetal pathology via innate and adaptive vascular inflammation in mice
Influenza A virus (IAV) infection during pregnancy causes severe maternal and perinatal complications, despite a lack of vertical transmission of IAV across the placenta. Here, we demonstrate a significant alteration in the maternal vascular landscape that underpins the maternal and downstream fetal pathology to IAV infection in mice. In IAV infection of nonpregnant mice, the local lung inflammatory response was contained to the lungs and was self-resolving, whereas in pregnant mice, virus dissemination to major maternal blood vessels, including the aorta, resulted in a peripheral "vascular storm," with elevated proinflammatory and antiviral mediators and the influx of Ly6Clow and Ly6Chigh monocytes, plus neutrophils and T cells. This vascular storm was associated with elevated levels of the adhesion molecules ICAM and VCAM and the pattern-recognition receptors TLR7 and TLR9 in the vascular wall, resulting in profound vascular dysfunction. The sequalae of this IAV-driven vascular storm included placental growth retardation and intrauterine growth restriction, evidence of placental and fetal brain hypoxia, and increased circulating cell free fetal DNA and soluble Flt1. In contrast, IAV infection in nonpregnant mice caused no obvious alterations in endothelial function or vascular inflammation. Therefore, IAV infection during pregnancy drives a significant systemic vascular alteration in pregnant dams, which likely suppresses critical blood flow to the placenta and fetus. This study in mice provides a fundamental mechanistic insight and a paradigm into how an immune response to a respiratory virus, such as IAV, is likely to specifically drive maternal and fetal pathologies during pregnancy.Stella Liong, Osezua Oseghale, Eunice E. To, Kurt Brassington, Jonathan R. Erlich, Raymond Luong ... et al
Metabolism of inflammation limited by AMPK and pseudo-starvation
Metabolic changes in cells that participate in inflammation, such as activated macrophages and T-helper 17 cells, include a shift towards enhanced glucose uptake, glycolysis and increased activity of the pentose phosphate pathway. Opposing roles in these changes for hypoxia-inducible factor 1ß and AMP-activated protein kinase have been proposed. By contrast, anti-inflammatory cells, such as M2 macrophages, regulatory T cells and quiescent memory T cells, have lower glycolytic rates and higher levels of oxidative metabolism. Some anti-inflammatory agents might act by inducing, through activation of AMP-activated protein kinase, a state akin to pseudo-starvation. Altered metabolism may thus participate in the signal-directed programs that promote or inhibit inflammation
Tnf-mediated cytotoxicity of l929 cells: role of staurosporine in enhancement of cytotoxicity and translocation of protein kinase c isozymes
The role of protein kinase C (PKC) in tumour necrosis factor (TNF)-mediated cytotoxicity was investigated using the L929 cell line. The PKC activator phorbol-12-myristate 13-acetate (PMA) increased proliferation and inhibited TNF-induced cytotoxicity of L929 cells. A range of specific PKC inhibitors had no effect on TNF-mediated killing, suggesting that PKC does not play a direct role in this response. However, staurosporine enhanced cytotoxicity by TNF in the presence of atinomycin D, a protein synthesis inhibitor. In view of this finding, the authors investigated the role of specific PKC isozymes in both TNF-mediated cytotoxicity and staurosporine-induced sensitization to killing. PKC-α, β, ϵ and ζ were detected in L929 cells. PKC-β was only weakly detected in the cytoplasm, PKC α, ϵ and ζ were all found in resting cytoplasm and membrane. Stimulation with PMA caused a strong translocation of PKC-α but not ζ to the membrane. TNF had no effect on these isozymes but interestingly caused a translocation of PKC-ϵ, which also occurred in response to PMA. Staurosporine caused a translocation of PKC-ζ to the plasma membrane and a loss of PKC-ϵ from the cytosol. Although TNF induced PKC-ϵ translocation, this is unlikely to be involved in cytotoxicity as this effect was also induced by PMA which protected against TNF-mediated cytotoxicity. Staurosporine also induced translocation of PKC-ζ, an isozyme whose activity was previously found to be resistant to inhibition by staurosporine. These findings suggest the possibility that the mechanism by which staurosporine potentiates TNF action does not involve inhibition of PKC, but in contrast may involve modulation of PKC-ζ
Cutting edge: miR-223 and EBV miR-BART15 regulate the NLRP3 inflammasome and IL-1 production
Although microRNA (miRNA) regulation of TLR signaling is well established, this has not yet been observed for NLR proteins or the inflammasomes they form. We have now validated a highly conserved miR-223 target site in the NLRP3 3′-untranslated region. miR-223 expression decreases as monocytes differentiate into macrophages, whereas NLRP3 protein increases during this time. However, overexpression of miR-223 prevents accumulation of NLRP3 protein and inhibits IL-1β production from the inflammasome. Virus inhibition of the inflammasome is an emerging theme, and we have also identified an EBV miRNA that can target the miR-223 binding site in the NLRP3 3′-untranslated region. Furthermore, this virus miRNA can be secreted from infected B cells via exosomes to inhibit the NLRP3 inflammasome in noninfected cells. Therefore, we have identified both the first endogenous miRNA that limits NLRP3 inflammatory capacity during myeloid cell development and also a viral miRNA that takes advantage of this, limiting inflammation for its own purposes