632 research outputs found

    Possibility of Slag Sensible Heat Recovery on Drum-like Installations

    Get PDF
    A variant of utilizing of slag physical heat in drum-like installations has been considered. A high-temperature melt is delivered to movable metal bodies. Heat is picked up from the working bodies surface and newly generated surfaces of slag due to interaction with working bodies. Surface of slag grains, as they cool down, allows to pick up heat with various energy characteristics. Keywords: smelter slags, heat content, drum-like installations, picking up and utilization of heat with various energy characteristic

    Noncompact SL(2,R) spin chain

    Full text link
    We consider the integrable spin chain model - the noncompact SL(2,R) spin magnet. The spin operators are realized as the generators of the unitary principal series representation of the SL(2,R) group. In an explicit form, we construct R-matrix, the Baxter Q-operator and the transition kernel to the representation of the Separated Variables (SoV). The expressions for the energy and quasimomentum of the eigenstates in terms of the Baxter Q-operator are derived. The analytic properties of the eigenvalues of the Baxter operator as a function of the spectral parameter are established. Applying the diagrammatic approach, we calculate Sklyanin's integration measure in the separated variables and obtain the solution to the spectral problem for the model in terms of the eigenvalues of the Q-operator. We show that the transition kernel to the SoV representation is factorized into a product of certain operators each depending on a single separated variable.Comment: 29 pages, 12 figure

    Aluminum nanoscales as hormetic response effectors in Fagopyrum esculentum seedlings

    No full text
    Aluminum (Al) nanoscales have been applied in many areas of production industries to produce cosmetic fillers, packaging materials, cutting tools, glass products, metal products, semiconductor materials, plastics, etc. Several studies have demonstrated the contradictory data for positive and negative effects of Al nanoscales on plants. The total length of seedlings grown for 21 days and the relative water content are used to determine the stimulating effects. In addition, the enhancement effect of Al nanoscales on photosynthetic pigments and the total phenolic and anthocyanin contents are determined. The growth stimulation and increase of the content of photosynthetic pigments are observed at the addition of 50 and 250 mg/L of Al nanoscales. Plant growth stimuli and the fixed beneficial action of Al nanoscales on morphofunctional traits at physiological and biochemical levels are interpreted as the hormesis phenomenon.ĐĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžĐœĐșĐž Đ°Đ»ŃŽĐŒŃ–ĐœŃ–ŃŽ (Al) ĐČĐžĐșĐŸŃ€ĐžŃŃ‚ĐŸĐČуються у Đ±Đ°ĐłĐ°Ń‚ŃŒĐŸŃ… сфДрах ĐżŃ€ĐŸĐŒĐžŃĐ»ĐŸĐČĐŸĐłĐŸ ĐČĐžŃ€ĐŸĐ±ĐœĐžŃ†Ń‚ĐČĐ° ĐŽĐ»Ń ĐŸŃ‚Ń€ĐžĐŒĐ°ĐœĐœŃ ĐșĐŸŃĐŒĐ”Ń‚ĐžŃ‡ĐœĐžŃ… ĐœĐ°ĐżĐŸĐČĐœŃŽĐČачіĐČ, паĐșуĐČĐ°Đ»ŃŒĐœĐžŃ… ĐŒĐ°Ń‚Đ”Ń€Ń–Đ°Đ»Ń–ĐČ, Ń€Ń–Đ·Đ°Đ»ŃŒĐœĐžŃ… ĐŒĐ°Ń‚Đ”Ń€Ń–Đ°Đ»Ń–ĐČ, ĐČĐžŃ€ĐŸĐ±Ń–ĐČ Đ·Ń– сĐșла, ĐŒĐ”Ń‚Đ°Đ»Đ”ĐČох ĐČĐžŃ€ĐŸĐ±Ń–ĐČ, ĐŒĐ°Ń‚Đ”Ń€Ń–Đ°Đ»Ń–ĐČ Đ· ĐœĐ°ĐżŃ–ĐČĐżŃ€ĐŸĐČŃ–ĐŽĐœĐžĐșĐŸĐČĐžĐŒĐž ĐČластОĐČĐŸŃŃ‚ŃĐŒĐž, ĐżĐ»Đ°ŃŃ‚ĐŒĐ°Ń Ń‚ĐŸŃ‰ĐŸ. Đ†ŃĐœŃƒŃŽŃ‚ŃŒ ŃŃƒĐżĐ”Ń€Đ”Ń‡Đ»ĐžĐČі ĐŽĐ°ĐœŃ– ĐżŃ€ĐŸ ĐżĐŸĐ·ĐžŃ‚ĐžĐČĐœŃ– та ĐœĐ”ĐłĐ°Ń‚ĐžĐČĐœŃ– ДфДĐșто ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžĐœĐŸĐș Al ĐœĐ° Ń€ĐŸŃĐ»ĐžĐœĐž. Đ—Đ°ĐżŃ€ĐŸĐżĐŸĐœĐŸĐČĐ°ĐœĐŸ ĐŽĐ»Ń ĐČĐžĐ·ĐœĐ°Ń‡Đ”ĐœĐœŃ ŃŃ‚ĐžĐŒŃƒĐ»ŃŽŃŽŃ‡ĐžŃ… ДфДĐșтіĐČ ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžĐœĐŸĐș Al ĐČĐžĐșĐŸŃ€ĐžŃŃ‚ĐŸĐČуĐČато Đ·Đ°ĐłĐ°Đ»ŃŒĐœŃƒ ĐŽĐŸĐČĐ¶ĐžĐœŃƒ 21 ĐŽĐŸĐ±ĐŸĐČох ĐżŃ€ĐŸŃ€ĐŸŃŃ‚ĐșіĐČ Ń‚Đ° ĐČŃ–ĐŽĐœĐŸŃĐœŃƒ Ń‚ŃƒŃ€ĐłĐ”ŃŃ†Đ”ĐœŃ‚ĐœŃ–ŃŃ‚ŃŒ. ĐšŃ€Ń–ĐŒ Ń‚ĐŸĐłĐŸ, ĐČĐžĐ·ĐœĐ°Ń‡Đ”ĐœĐŸ ĐżĐŸĐ·ĐžŃ‚ĐžĐČĐœĐžĐč ĐČплОĐČ ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžĐœĐŸĐș Al ĐœĐ° ĐČĐŒŃ–ŃŃ‚ Ń„ĐŸŃ‚ĐŸŃĐžĐœŃ‚Đ”Ń‚ĐžŃ‡ĐœĐžŃ… ĐżŃ–ĐłĐŒĐ”ĐœŃ‚Ń–ĐČ, Đ·Đ°ĐłĐ°Đ»ŃŒĐœĐžĐč ĐČĐŒŃ–ŃŃ‚ Ń„Đ”ĐœĐŸĐ»ŃŒĐœĐžŃ… ŃĐżĐŸĐ»ŃƒĐș та Đ°ĐœŃ‚ĐŸŃ†Ń–Đ°ĐœŃ–ĐČ. Đ”ĐŸĐŽĐ°ĐČĐ°ĐœĐœŃ ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžĐœĐŸĐș Al у ĐșĐŸĐœŃ†Đ”ĐœŃ‚Ń€Đ°Ń†Ń–Ń— 50 та 250 ĐŒĐł/Đ» ŃĐżŃ€ĐžŃ‡ĐžĐœŃŃ” ŃŃ‚ĐžĐŒŃƒĐ»ŃŃ†Ń–ŃŽ Ń€ĐŸŃŃ‚Ńƒ та Đ·Đ±Ń–Đ»ŃŒŃˆĐ”ĐœĐœŃ ĐČĐŒŃ–ŃŃ‚Ńƒ Ń„ĐŸŃ‚ĐŸŃĐžĐœŃ‚Đ”Ń‚ĐžŃ‡ĐœĐžŃ… ĐżŃ–ĐłĐŒĐ”ĐœŃ‚Ń–ĐČ. ĐĄŃ‚ĐžĐŒŃƒĐ»ŃŃ†Ń–Ń Ń€ĐŸŃŃ‚Ńƒ Ń€ĐŸŃĐ»ĐžĐœ і ĐżĐŸĐ·ĐžŃ‚ĐžĐČĐœĐžĐč ĐČплОĐČ ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžĐœĐŸĐș Al ĐœĐ° ĐŒĐŸŃ€Ń„ĐŸŃ„ŃƒĐœĐșŃ†Ń–ĐŸĐœĐ°Đ»ŃŒĐœŃ– хараĐșтДрОстОĐșĐž ĐœĐ° Ń„Ń–Đ·Ń–ĐŸĐ»ĐŸĐłŃ–Ń‡ĐœĐŸĐŒŃƒ та Đ±Ń–ĐŸŃ…Ń–ĐŒŃ–Ń‡ĐœĐŸĐŒŃƒ ріĐČĐœŃŃ… Ń–ĐœŃ‚Đ”Ń€ĐżŃ€Đ”Ń‚ĐŸĐČĐ°ĐœŃ– яĐș Ń„Đ”ĐœĐŸĐŒĐ”Đœ ĐłĐŸŃ€ĐŒĐ”Đ·ĐžŃŃƒ.ĐĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžŃ†Ń‹ Đ°Đ»ŃŽĐŒĐžĐœĐžŃ (Al) ĐžŃĐżĐŸĐ»ŃŒĐ·ŃƒŃŽŃ‚ŃŃ ĐČĐŸ ĐŒĐœĐŸĐłĐžŃ… сфДрах ĐżŃ€ĐŸĐŒŃ‹ŃˆĐ»Đ”ĐœĐœĐŸĐłĐŸ ĐżŃ€ĐŸĐžĐ·ĐČĐŸĐŽŃŃ‚ĐČĐ° ĐŽĐ»Ń ĐżĐŸĐ»ŃƒŃ‡Đ”ĐœĐžŃ ĐșĐŸŃĐŒĐ”Ń‚ĐžŃ‡Đ”ŃĐșох ĐœĐ°ĐżĐŸĐ»ĐœĐžŃ‚Đ”Đ»Đ”Đč, упаĐșĐŸĐČĐŸŃ‡ĐœŃ‹Ń… ĐŒĐ°Ń‚Đ”Ń€ĐžĐ°Đ»ĐŸĐČ, Ń€Đ”Đ¶ŃƒŃ‰ĐžŃ… ĐŒĐ°Ń‚Đ”Ń€ĐžĐ°Đ»ĐŸĐČ, ОзЎДлОĐč Оз стДĐșла, ĐŒĐ”Ń‚Đ°Đ»Đ»ĐžŃ‡Đ”ŃĐșох ОзЎДлОĐč, ĐŒĐ°Ń‚Đ”Ń€ĐžĐ°Đ»ĐŸĐČ Ń ĐżĐŸĐ»ŃƒĐżŃ€ĐŸĐČĐŸĐŽĐœĐžĐșĐŸĐČŃ‹ĐŒĐž сĐČĐŸĐčстĐČĐ°ĐŒĐž, ĐżĐ»Đ°ŃŃ‚ĐŒĐ°ŃŃ Đž т. Đż. ĐĄŃƒŃ‰Đ”ŃŃ‚ĐČуют ĐżŃ€ĐŸŃ‚ĐžĐČĐŸŃ€Đ”Ń‡ĐžĐČŃ‹Đ” ĐŽĐ°ĐœĐœŃ‹Đ” ĐŸ ĐżĐŸĐ»ĐŸĐ¶ĐžŃ‚Đ”Đ»ŃŒĐœŃ‹Ń… Đž ĐŸŃ‚Ń€ĐžŃ†Đ°Ń‚Đ”Đ»ŃŒĐœŃ‹Ń… ŃŃ„Ń„Đ”Đșтах ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžŃ† Al ĐœĐ° Ń€Đ°ŃŃ‚Đ”ĐœĐžŃ. ĐŸŃ€Đ”ĐŽĐ»ĐŸĐ¶Đ”ĐœĐŸ ĐŽĐ»Ń ĐŸĐżŃ€Đ”ĐŽĐ”Đ»Đ”ĐœĐžŃ ŃŃ‚ĐžĐŒŃƒĐ»ĐžŃ€ŃƒŃŽŃ‰ĐžŃ… ŃŃ„Ń„Đ”ĐșŃ‚ĐŸĐČ ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžŃ† Al ĐžŃĐżĐŸĐ»ŃŒĐ·ĐŸĐČать ĐŸĐ±Ń‰ŃƒŃŽ ĐŽĐ»ĐžĐœŃƒ 21 ŃŃƒŃ‚ĐŸŃ‡ĐœŃ‹Ń… ĐżŃ€ĐŸŃ€ĐŸŃŃ‚ĐșĐŸĐČ Đž ĐŸŃ‚ĐœĐŸŃĐžŃ‚Đ”Đ»ŃŒĐœŃƒŃŽ Ń‚ŃƒŃ€ĐłĐ”ŃŃ†Đ”ĐœŃ‚ĐœĐŸŃŃ‚ŃŒ. ĐšŃ€ĐŸĐŒĐ” Ń‚ĐŸĐłĐŸ, ĐŸĐżŃ€Đ”ĐŽĐ”Đ»Đ”ĐœĐŸ ĐżĐŸĐ»ĐŸĐ¶ĐžŃ‚Đ”Đ»ŃŒĐœĐŸĐ” ĐČĐ»ĐžŃĐœĐžĐ” ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžŃ† Al ĐœĐ° ŃĐŸĐŽĐ”Ń€Đ¶Đ°ĐœĐžĐ” Ń„ĐŸŃ‚ĐŸŃĐžĐœŃ‚Đ”Ń‚ĐžŃ‡Đ”ŃĐșох ĐżĐžĐłĐŒĐ”ĐœŃ‚ĐŸĐČ, ĐŸĐ±Ń‰Đ”Đ” ŃĐŸĐŽĐ”Ń€Đ¶Đ°ĐœĐžĐ” Ń„Đ”ĐœĐŸĐ»ŃŒĐœŃ‹Ń… ŃĐŸĐ”ĐŽĐžĐœĐ”ĐœĐžĐč Đž Đ°ĐœŃ‚ĐŸŃ†ĐžĐ°ĐœĐŸĐČ. Đ”ĐŸĐ±Đ°ĐČĐ»Đ”ĐœĐžĐ” ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžŃ† Al ĐČ ĐșĐŸĐœŃ†Đ”ĐœŃ‚Ń€Đ°Ń†ĐžĐž 50 Đž 250 ĐŒĐł/Đ» проĐČĐŸĐŽĐžŃ‚ Đș ŃŃ‚ĐžĐŒŃƒĐ»ŃŃ†ĐžĐž Ń€ĐŸŃŃ‚Đ° Đž уĐČĐ”Đ»ĐžŃ‡Đ”ĐœĐžŃŽ ŃĐŸĐŽĐ”Ń€Đ¶Đ°ĐœĐžŃ Ń„ĐŸŃ‚ĐŸŃĐžĐœŃ‚Đ”Ń‚ĐžŃ‡Đ”ŃĐșох ĐżĐžĐłĐŒĐ”ĐœŃ‚ĐŸĐČ. ĐĄŃ‚ĐžĐŒŃƒĐ»ŃŃ†ĐžŃ Ń€ĐŸŃŃ‚Đ° Ń€Đ°ŃŃ‚Đ”ĐœĐžĐč Đž ĐżĐŸĐ»ĐŸĐ¶ĐžŃ‚Đ”Đ»ŃŒĐœĐŸĐ” ĐČĐ»ĐžŃĐœĐžĐ” ĐœĐ°ĐœĐŸŃ‡Đ°ŃŃ‚ĐžŃ† Al ĐœĐ° ĐŒĐŸŃ€Ń„ĐŸŃ„ŃƒĐœĐșŃ†ĐžĐŸĐœĐ°Đ»ŃŒĐœŃ‹Đ” хараĐșтДрОстОĐșĐž ĐœĐ° Ń„ĐžĐ·ĐžĐŸĐ»ĐŸĐłĐžŃ‡Đ”ŃĐșĐŸĐŒ Đž Đ±ĐžĐŸŃ…ĐžĐŒĐžŃ‡Đ”ŃĐșĐŸĐŒ ŃƒŃ€ĐŸĐČĐœŃŃ… ĐžĐœŃ‚Đ”Ń€ĐżŃ€Đ”Ń‚ĐžŃ€ĐŸĐČĐ°ĐœŃ‹ ĐșĐ°Đș Ń„Đ”ĐœĐŸĐŒĐ”Đœ ĐłĐŸŃ€ĐŒĐ”Đ·ĐžŃĐ°

    Classical/quantum integrability in AdS/CFT

    Full text link
    We discuss the AdS/CFT duality from the perspective of integrable systems and establish a direct relationship between the dimension of single trace local operators composed of two types of scalar fields in N=4 super Yang-Mills and the energy of their dual semiclassical string states in AdS(5) X S(5). The anomalous dimensions can be computed using a set of Bethe equations, which for ``long'' operators reduces to a Riemann-Hilbert problem. We develop a unified approach to the long wavelength Bethe equations, the classical ferromagnet and the classical string solutions in the SU(2) sector and present a general solution, governed by complex curves endowed with meromorphic differentials with integer periods. Using this solution we compute the anomalous dimensions of these long operators up to two loops and demonstrate that they agree with string-theory predictions.Comment: 49 pages, 5 figures, LaTeX; v2: complete proof of the two-loop equivalence between the sigma model and the gauge theory is added. References added; v4,v5,v6: misprints correcte

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,eâ€Čp)Îł(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,eâ€Čp)Îł(e,e'p)\gamma to H(e,eâ€Čp)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Heavy quarkonium: progress, puzzles, and opportunities

    Get PDF
    A golden age for heavy quarkonium physics dawned a decade ago, initiated by the confluence of exciting advances in quantum chromodynamics (QCD) and an explosion of related experimental activity. The early years of this period were chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in 2004, which presented a comprehensive review of the status of the field at that time and provided specific recommendations for further progress. However, the broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles could only be partially anticipated. Since the release of the YR, the BESII program concluded only to give birth to BESIII; the BB-factories and CLEO-c flourished; quarkonium production and polarization measurements at HERA and the Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the deconfinement regime. All these experiments leave legacies of quality, precision, and unsolved mysteries for quarkonium physics, and therefore beg for continuing investigations. The plethora of newly-found quarkonium-like states unleashed a flood of theoretical investigations into new forms of matter such as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b}, and b\bar{c} bound states have been shown to validate some theoretical approaches to QCD and highlight lack of quantitative success for others. The intriguing details of quarkonium suppression in heavy-ion collisions that have emerged from RHIC have elevated the importance of separating hot- and cold-nuclear-matter effects in quark-gluon plasma studies. This review systematically addresses all these matters and concludes by prioritizing directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K. Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D. Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A. Petrov, P. Robbe, A. Vair
    • 

    corecore