68 research outputs found
Recommended from our members
Microwave Processing for Advance Electro-Optic Materials
This project addressed the technical and scientific goals of developing new methods for the formation of striation-free single crystals of potassium tantalate niobate. This solid-solution system has the potential for serving as a general electro-optic material with a wide range of optical applications. The performance of the material is, however, severely limited by the effects of compositional inhomogeneity that is generally induced during the single crystal growth process due to the nature of the binary phase diagram of the mixed tantalatehiobate system. Single-crystal boules of potassium tantalate niobate (KTa{sub 1-x}Nb{sub x}O{sub 3} or KTN) with varying tantalum-to-niobium ratios (or values of x) were grown under a variety of experimental conditions. The resulting single crystals were characterized in terms of their compositional homogeneity and optical quality. Single crystals were grown using both the most-favorable established set of growth parameters as well as in the presence of programmed oscillatory temperature variations. The purpose of these deliberately induced variations was to introduce controlled compositional variations and associated optical striations in the solid-solution single crystals. The overall objective of the effort was to utilize microwave heating and processing methods to treat the inhomogeneous single crystals for the purpose of eliminating the compositional variations that lead to striations and the associated varying changes in the refractive index of the material. In order to realize the ultimate goal of the effort, it was necessary to develop methods that would lead to the effective coupling of the microwave field to the KTN single crystals. Achieving the technical and commercial goals of this effort would have made it possible to introduce an important new electro-optic product into the market place, to improve our fundamental understanding of solid-state diffusion processes in general (and of microwave-assisted thermal processes in particular), and finally, to create a new class of industrial applications for microwave heating
Recommended from our members
New Crystal-Growth Methods for Producing Lattice-Matched Substrates for High-Temperature Superconductors
This effort addressed the technical problem of identifying and growing, on a commercial scale, suitable single-crystal substrates for the subsequent deposition of epitaxial thin films of high temperature semiconductors such as GaN/AlN. The lack of suitable lattice-matched substrate materials was one of the major problem areas in the development of semiconducting devices for use at elevated temperatures as well as practical opto-electronic devices based on Al- and GaN technology. Such lattice-matched substrates are necessary in order to reduce or eliminate high concentrations of defects and dislocations in GaN/AlN and related epitaxial thin films. This effort concentrated, in particular, on the growth of single crystals of ZnO for substrate applications and it built on previous ORNL experience in the chemical vapor transport growth of large single crystals of zinc oxide. This combined expertise in the substrate growth area was further complemented by the ability of G. Eres and his collaborators to deposit thin films of GaN on the subject substrates and the overall ORNL capability for characterizing the quality of such films. The research effort consisted of research on the growth of two candidate substrate materials in conjunction with concurrent research on the growth and characterization of GaN films, i.e. the effort combined bulk crystal growth capabilities in the area of substrate production at both ORNL and the industrial partner, Commercial Crystal Growth Laboratories (CCL), Naples, Florida, with the novel thin-film deposition techniques previously developed in the ORNL SSD
Switchable reflectivity on silicon from a composite VO 2-SiO 2 protecting layer
The production of near-surface nanocomposites with a thermally variable reflectivity on single crystal Si using ion beams and thermal processing was presented. Stoichiometric coimplantation of vanadium and oxygen ions and subsequent thermal processing were employed to form embedded VO 2 nanoparticles in the SiO 2 film. It was observed that the reflectivity of the vanadium dioxide particles underwent a large changes at the VO 2 semiconductor-to-metal phase transition. The reflectivity of the vanadium dioxide particles which underwent large changes provide a mechanism for thermally controlling the reflectivity of the VO 2/SiO 2/Si layer and effectively, the Si crystal surface
Synthesis and characterization of size-controlled vanadium dioxide nanocrystals in a fused silica matrix
Vanadium dioxide single-crystal precipitates with controlled particle sizes were produced in an amorphous, fused SiO 2 host by the stoichiometric coimplantation of vanadium and oxygen ions and subsequent thermal processing. The effects of the vanadium dioxide nanocrystal size, nanocrystal morphology, and particle/host interactions on the VO 2 semiconductor-to-metal phase transition were characterized. VO 2 nanoparticles embedded in amorphous SiO 2 exhibit a sharp phase transition with a hysteresis that is up to 50°C in width - one of the largest values ever reported for this transition. The relative decrease in the optical transmission in the near-infrared region in going from the semiconducting to the metallic phase of VO 2 ranges from 20% to 35%. Both the hysteresis width and the transition temperature are correlated with the size of the precipitates. Doping the embedded VO 2 particles with ions such as titanium alters the characteristics of the phase transition, pointing the way to control the hysteresis behavior over a wide range of values and providing insight into the operative physical mechanisms
Size effects in the structural phase transition of VO2 nanoparticles
We have observed size effects in the structural phase transition of submicron vanadium dioxide precipitates in silica. The VO2 nanoprecipitates are produced by the stoichiometric coimplantation of vanadium and oxygen and subsequent thermal processing. The observed size dependence in the transition temperature and hysteresis loops of the semiconductor-to-metal phase transition in VO2 is described in terms of heterogeneous nucleation statistics with a phenomenological approach in which the density of nucleating defects is a power function of the driving force
Optical nonlinearities in VO 2 nanoparticles and thin films
Z-scan and pump-probe measurements with ultrafast, 800 nm laser pulses were used to compare the ultrafast optical nonlinearities of VO 2 nanoparticles and thin films in both semiconducting and metallic states. In the metallic state, both the nanocrystals and thin films exhibit a positive, intensity-dependent nonlinear index of refraction. However, the nonlinear effects are relatively larger in the VO 2 nanocrystals, which also reveal a saturable nonlinear absorption. When the semiconductor-to-metal phase transition is induced by the laser pulse, VO 2 thin films exhibit a negative equivalent nonlinear index of refraction while the nanocrystals exhibit a smaller but still positive index. Both the VO 2 nanocrystals and thin films undergo the phase transition within 120 fs
Enhanced hysteresis in the semiconductor-to-metal phase transition of VO2 precipitates formed in SiO2 by ion implantation
A strongly enhanced hysteresis with a width of >34°C has been observed in the semiconductor-to-metal phase transition of submicron-scale VO2 precipitates formed in the near-surface region of amorphous SiO2 by the stoichiometric coimplantation of vanadium and oxygen and subsequent thermal processing. This width is approximately an order of magnitude larger than that reported previously for the phase transition of VO2 particles formed in Al2O3 by a similar technique. The phase transition is accompanied by a significant change in infrared transmission. The anomalously wide hysteresis loop observed here for the VO2/SiO2 system can be exploited in optical data storage and switching applications in the infrared region
The broad Brillouin doublets and central peak of KTaO_3
The incipient ferroelectric KTaO3 presents low-T Brillouin spectra
anomalies,e.g. a broad central peak (CP), and some additional Brillouin
doublets (BD), whose origin is interpreted in terms of phonon-density
fluctuation processes. A parameterisation from new extensive high-resolution
neutron-scattering measurements is used to show that hydrodynamic second sound
from high damping (compared to BD frequency) TA phonons may exist in the
crystal. Furthermore, low damping thermal phonons may scatter light through
two-phonon difference processes and appear on the Brillouin spectra either as a
sharp or a broader BD, depending on the phonon damping and group velocity . The
comparison between computed anisotropies and experimental measurements favours
the second process.Comment: 3 pages, 1 figure, ECNS99 Proceedings. See http://www.ill.fr
Fabricating arrays of vanadium dioxide nanodisks by focused ion-beam lithography and pulsed laser deposition
Vanadium dioxide undergoes a structural (monoclinic to tetragonal) insulator-to-metal transition at 70°C, accompanied by large changes in electrical and optical properties. By combining focused ion-beam lithography and pulsed laser deposition, patterned nanoscale arrays of vanadium dioxide nanoparticles are created that can be used for studies of linear and nonlinear optical physics, as well as demonstrating the potential for a variety of applications
- …