634 research outputs found
The quality of different types of child care at 10 and 18 months. A comparison between types and factors related to quality.
The quality of care offered in four different types of non-parental child care to 307 infants at 10 months old and 331 infants at 18 months old was compared and factors associated with higher quality were identified. Observed quality was lowest in nurseries at each age point, except that at 18 months they offered more learning activities. There were few differences in the observed quality of care by child-minders, grandparents and nannies, although grandparents had somewhat lower safety and health scores and offered children fewer activities. Cost was largely unrelated to quality of care except in child-minding, where higher cost was associated with higher quality. Observed ratios of children to adults had a significant impact on quality of nursery care; the more infants or toddlers each adult had to care for, the lower the quality of the care she gave them. Mothers' overall satisfaction with their child's care was positively associated with its quality for home-based care but not for nursery settings
Qualitative thematic analysis of consent forms used in cancer genome sequencing
<p>Abstract</p> <p>Background</p> <p>Large-scale whole genome sequencing (WGS) studies promise to revolutionize cancer research by identifying targets for therapy and by discovering molecular biomarkers to aid early diagnosis, to better determine prognosis and to improve treatment response prediction. Such projects raise a number of ethical, legal, and social (ELS) issues that should be considered. In this study, we set out to discover how these issues are being handled across different jurisdictions.</p> <p>Methods</p> <p>We examined informed consent (IC) forms from 30 cancer genome sequencing studies to assess (1) stated purpose of sample collection, (2) scope of consent requested, (3) data sharing protocols (4) privacy protection measures, (5) described risks of participation, (6) subject re-contacting, and (7) protocol for withdrawal.</p> <p>Results</p> <p>There is a high degree of similarity in how cancer researchers engaged in WGS are protecting participant privacy. We observed a strong trend towards both using samples for additional, unspecified research and sharing data with other investigators. IC forms were varied in terms of how they discussed re-contacting participants, returning results and facilitating participant withdrawal. Contrary to expectation, there were no consistent trends that emerged over the eight year period from which forms were collected.</p> <p>Conclusion</p> <p>Examining IC forms from WGS studies elucidates how investigators are handling ELS challenges posed by this research. This information is important for ensuring that while the public benefits of research are maximized, the rights of participants are also being appropriately respected.</p
Recommended from our members
Biomarker discovery and redundancy reduction towards classification using a multi-factorial MALDI-TOF MS T2DM mouse model dataset
Diabetes like many diseases and biological processes is not mono-causal. On the one hand multifactorial studies with complex experimental design are required for its comprehensive analysis. On the other hand, the data from these studies often include a substantial amount of redundancy such as proteins that are typically represented by a multitude of peptides. Coping simultaneously with both complexities (experimental and technological) makes data analysis a challenge for Bioinformatics
Effects of Health Insurance on Perceived Quality of Care Among Latinos in the United States
There is suggestive evidence that lower rates of health insurance coverage increases the gaps in quality and access to care among Latinos as compared with non-Latino whites. In order to examine these potential disparities, we assessed the effects of insurance coverage and multiple covariates on perceived quality of care.
To assess the distribution of perceived quality of care received in a national Latino population sample, and the role of insurance in different patient subgroups.
Telephone interviews conducted between 2007 and 2008 using the Pew Hispanic Center/Robert Wood Johnson Foundation Latino Health Surveys (Waves 1 and 2).
Randomly selected Latino adults aged ≥18 years living in the United States.
Pearson χ2 tests identified associations among various demographic variables by quality of care ratings (poor, fair, good, excellent) for the insured and uninsured (Wave 1: N = 3545). Subgroup analyses were conducted among Wave 2 participants reporting chronic conditions (N = 1067). Bivariate and multivariate analyses were conducted to estimate the effects of insurance, demographic variables and consumer characteristics on quality of care.
Insurance availability had an odds ratio of 1.47 (95% CI, 1.22–1.76) net of confounders in predicting perceived quality of care among Latinos. The largest gap in rates of excellent/good ratings occurred among the insured with eight or more doctor visits compared to the uninsured (76.2% vs. 54.6%, P < .05).
Future research can gain additional insights by examining the impact of health insurance on processes of care with a refined focus on specific transactions between consumers and providers’ support staff and physicians guided by the principles of patient-centered care
Stacked Search for Gravitational Waves from the 2006 SGR 1900+14 Storm
We present the results of a LIGO search for short-duration gravitational
waves (GWs) associated with the 2006 March 29 SGR 1900+14 storm. A new search
method is used, "stacking'' the GW data around the times of individual
soft-gamma bursts in the storm to enhance sensitivity for models in which
multiple bursts are accompanied by GW emission. We assume that variation in the
time difference between burst electromagnetic emission and potential burst GW
emission is small relative to the GW signal duration, and we time-align GW
excess power time-frequency tilings containing individual burst triggers to
their corresponding electromagnetic emissions. We use two GW emission models in
our search: a fluence-weighted model and a flat (unweighted) model for the most
electromagnetically energetic bursts. We find no evidence of GWs associated
with either model. Model-dependent GW strain, isotropic GW emission energy
E_GW, and \gamma = E_GW / E_EM upper limits are estimated using a variety of
assumed waveforms. The stacking method allows us to set the most stringent
model-dependent limits on transient GW strain published to date. We find E_GW
upper limit estimates (at a nominal distance of 10 kpc) of between 2x10^45 erg
and 6x10^50 erg depending on waveform type. These limits are an order of
magnitude lower than upper limits published previously for this storm and
overlap with the range of electromagnetic energies emitted in SGR giant flares.Comment: 7 pages, 3 figure
Constraints on cosmic strings using data from the first Advanced LIGO observing run
Cosmic strings are topological defects which can be formed in grand unified theory scale phase transitions in the early universe. They are also predicted to form in the context of string theory. The main mechanism for a network of Nambu-Goto cosmic strings to lose energy is through the production of loops and the subsequent emission of gravitational waves, thus offering an experimental signature for the existence of cosmic strings. Here we report on the analysis conducted to specifically search for gravitational-wave bursts from cosmic string loops in the data of Advanced LIGO 2015-2016 observing run (O1). No evidence of such signals was found in the data, and as a result we set upper limits on the cosmic string parameters for three recent loop distribution models. In this paper, we initially derive constraints on the string tension Gμ and the intercommutation probability, using not only the burst analysis performed on the O1 data set but also results from the previously published LIGO stochastic O1 analysis, pulsar timing arrays, cosmic microwave background and big-bang nucleosynthesis experiments. We show that these data sets are complementary in that they probe gravitational waves produced by cosmic string loops during very different epochs. Finally, we show that the data sets exclude large parts of the parameter space of the three loop distribution models we consider
Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817
The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (≲1 s) and intermediate-duration (≲500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1-4 kHz is at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is for a millisecond magnetar model, and for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.</p
Full band all-sky search for periodic gravitational waves in the O1 LIGO data
We report on a new all-sky search for periodic gravitational waves in the frequency band 475–2000 Hz and with a frequency time derivative in the range of ½−1.0; þ0.1 × 10−8 Hz=s. Potential signals could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. This search uses the data from Advanced LIGO’s first observational run O1. No gravitational-wave signals were observed, and upper limits were placed on their strengths. For completeness, results from the separately published low-frequency search 20–475 Hz are included as well. Our lowest upper limit on worst-case (linearly polarized) strain amplitude h0 is ∼4 × 10−25 near 170 Hz, while at the high end of our frequency range, we achieve a worst-case upper limit of 1.3 × 10−24. For a circularly polarized source (most favorable orientation), the smallest upper limit obtained is ∼1.5 × 10−25
- …