63 research outputs found

    Cdk1 Targets Srs2 to Complete Synthesis-Dependent Strand Annealing and to Promote Recombinational Repair

    Get PDF
    Cdk1 kinase phosphorylates budding yeast Srs2, a member of UvrD protein family, displays both DNA translocation and DNA unwinding activities in vitro. Srs2 prevents homologous recombination by dismantling Rad51 filaments and is also required for double-strand break (DSB) repair. Here we examine the biological significance of Cdk1-dependent phosphorylation of Srs2, using mutants that constitutively express the phosphorylated or unphosphorylated protein isoforms. We found that Cdk1 targets Srs2 to repair DSB and, in particular, to complete synthesis-dependent strand annealing, likely controlling the disassembly of a D-loop intermediate. Cdk1-dependent phosphorylation controls turnover of Srs2 at the invading strand; and, in absence of this modification, the turnover of Rad51 is not affected. Further analysis of the recombination phenotypes of the srs2 phospho-mutants showed that Srs2 phosphorylation is not required for the removal of toxic Rad51 nucleofilaments, although it is essential for cell survival, when DNA breaks are channeled into homologous recombinational repair. Cdk1-targeted Srs2 displays a PCNA–independent role and appears to have an attenuated ability to inhibit recombination. Finally, the recombination defects of unphosphorylatable Srs2 are primarily due to unscheduled accumulation of the Srs2 protein in a sumoylated form. Thus, the Srs2 anti-recombination function in removing toxic Rad51 filaments is genetically separable from its role in promoting recombinational repair, which depends exclusively on Cdk1-dependent phosphorylation. We suggest that Cdk1 kinase counteracts unscheduled sumoylation of Srs2 and targets Srs2 to dismantle specific DNA structures, such as the D-loops, in a helicase-dependent manner during homologous recombinational repair

    Small Interfering RNA Targeting M2 Gene Induces Effective and Long Term Inhibition of Influenza A Virus Replication

    Get PDF
    RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection

    Oncogenic Stress Induced by Acute Hyper-Activation of Bcr-Abl Leads to Cell Death upon Induction of Excessive Aerobic Glycolysis

    Get PDF
    In response to deregulated oncogene activation, mammalian cells activate disposal programs such as programmed cell death. To investigate the mechanisms behind this oncogenic stress response we used Bcr-Abl over-expressing cells cultivated in presence of imatinib. Imatinib deprivation led to rapid induction of Bcr-Abl activity and over-stimulation of PI3K/Akt-, Ras/MAPK-, and JAK/STAT pathways. This resulted in a delayed necrosis-like cell death starting not before 48 hours after imatinib withdrawal. Cell death was preceded by enhanced glycolysis, glutaminolysis, and amino acid metabolism leading to elevated ATP and protein levels. This enhanced metabolism could be linked to induction of cell death as inhibition of glycolysis or glutaminolysis was sufficient to sustain cell viability. Therefore, these data provide first evidence that metabolic changes induced by Bcr-Abl hyper-activation are important mediators of oncogenic stress-induced cell death

    Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571).

    No full text
    Bcr-Abl proteins are effective inducers of the leukemic phenotype in chronic myeloid leukemia (CML) and distinct variants of acute lymphoblastic leukemia (ALL). Targeting bcr-abl by treatment with the selective tyrosine kinase inhibitor imatinib has proved to be highly efficient for controlling leukemic growth. However, it is unclear whether imatinib is sufficient to eradicate the disease because of primary or secondary resistance of leukemic cells. Therefore, targeting Bcr-Abl with an alternative approach is of great interest. We demonstrate that RNA interference (RNAi) with a breakpoint-specific short-interfering RNA (siRNA) is capable of decreasing Bcr-Abl protein expression and of antagonizing Bcr-Abl-induced biochemical activities. RNAi selectively inhibited Bcr-Abl-dependent cell growth. Furthermore, bcr-abl-homologous siRNA increased sensitivity to imatinib in Bcr-Abl-overexpressing cells and in a cell line expressing the imatinib-resistant Bcr-Abl kinase domain mutation His396Pro, thereby antagonizing 2 of the major mechanisms of resistance to imatinib

    NOT10 and C2orf29/NOT11 form a conserved module of the CCR4-NOT complex that docks onto the NOT1 N-terminal domain

    Get PDF
    The CCR4-NOT complex plays a crucial role in post-transcriptional mRNA regulation in eukaryotes. This complex catalyzes the removal of mRNA poly(A) tails, thereby repressing translation and committing an mRNA to degradation. The conserved core of the complex is assembled by the interaction of at least two modules: the NOT module, which minimally consists of NOT1, NOT2 and NOT3, and a catalytic module comprising two deadenylases, CCR4 and POP2/CAF1. Additional complex subunits include CAF40 and two newly identified human subunits, NOT10 and C2orf29. The role of the NOT10 and C2orf29 subunits and how they are integrated into the complex are unknown. Here, we show that the Drosophila melanogaster NOT10 and C2orf29 orthologs form a complex that interacts with the N-terminal domain of NOT1 through C2orf29. These interactions are conserved in human cells, indicating that NOT10 and C2orf29 define a conserved module of the CCR4-NOT complex. We further investigated the assembly of the D. melanogaster CCR4-NOT complex, and demonstrate that the conserved armadillo repeat domain of CAF40 interacts with a region of NOT1, comprising a domain of unknown function, DUF3819. Using tethering assays, we show that each subunit of the CCR4-NOT complex causes translational repression of an unadenylated mRNA reporter and deadenylation and degradation of a polyadenylated reporter. Therefore, the recruitment of a single subunit of the complex to an mRNA target induces the assembly of the complete CCR4-NOT complex, resulting in a similar regulatory outcome

    The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets

    No full text
    Animal miRNAs silence the expression of mRNA targets through translational repression, deadenylation and subsequent mRNA degradation. Silencing requires association of miRNAs with an Argonaute protein and a GW182 family protein. In turn, GW182 proteins interact with poly(A)-binding protein (PABP) and the PAN2-PAN3 and CCR4-NOT deadenylase complexes. These interactions are required for the deadenylation and decay of miRNA targets. Recent studies have indicated that miRNAs repress translation before inducing target deadenylation and decay; however, whether translational repression and deadenylation are coupled or represent independent repressive mechanisms is unclear. Another remaining question is whether translational repression also requires GW182 proteins to interact with both PABP and deadenylases. To address these questions, we characterized the interaction of Drosophila melanogaster GW182 with deadenylases and defined the minimal requirements for a functional GW182 protein. Functional assays in D. melanogaster and human cells indicate that miRNA-mediated translational repression and degradation are mechanistically linked and are triggered through the interactions of GW182 proteins with PABP and deadenylases

    Molecular architecture of 4E-BP translational inhibitors bound to eIF4E

    No full text
    The eIF4E-binding proteins (4E-BPs) represent a diverse class of translation inhibitors that are often deregulated in cancer cells. 4E-BPs inhibit translation by competing with eIF4G for binding to eIF4E through an interface that consists of canonical and non-canonical eIF4E-binding motifs connected by a linker. The lack of high-resolution structures including the linkers, which contain phosphorylation sites, limits our understanding of how phosphorylation inhibits complex formation. Furthermore, the binding mechanism of the non-canonical motifs is poorly understood. Here, we present structures of human eIF4E bound to 4E-BP1 and fly eIF4E bound to Thor, 4E-T, and eIF4G. These structures reveal architectural elements that are unique to 4E-BPs and provide insight into the consequences of phosphorylation. Guided by these structures, we designed and crystallized a 4E-BP mimic that shows increased repressive activity. Our studies pave the way for the rational design of 4E-BP mimics as therapeutic tools to decrease translation during oncogenic transformation

    Assembly and function of the NOT module of the CCR4-NOT complex

    No full text
    The CCR4-NOT complex plays a crucial role in post-transcriptional mRNA regulation in eukaryotic cells. It catalyzes the removal of mRNA poly(A) tails, thereby repressing translation and committing mRNAs to degradation. The complex consists of a catalytic module comprising two deadenylases (POP2/CAF1 and CCR4) and the NOT module minimally containing the NOT1, NOT2 and NOT3 subunits. It is known that NOT1 acts as a scaffold protein for the assembly of the CCR4-NOT complex. However, the mechanism by which the NOT2 and NOT3 proteins interact with each other and dock onto the NOT1 scaffold remains unknown.NOT2 and NOT3 are related proteins that both contain a highly conserved C-terminal domain referred to as “NOT-box”. Here we show that the NOT- box is a heterodimerization domain mediating the assembly of the NOT2-NOT3 subcomplex. We have solved the crystal structures of the human NOT2 and NOT3 NOT-boxes at 2.4Å and 2.5Å resolution, respectively. The NOT-box consists of a four-stranded C-terminal open b-barrel as well as N-terminally located a-helices, which are required for heterodimerization. We also defined the domains of NOT1, NOT2 and NOT3 required for the assembly of the NOT1-NOT2-NOT3 module. Functional studies in Drosophila melanogaster cells revealed that depletion of NOT1, NOT2 or NOT3 inhibits mRNA deadenylation with a stronger effect for the NOT1 depletion, followed by NOT3. Importantly, NOT3 depletion destabilizes both NOT1 and NOT2 indicating that one important function of NOT3 is the stabilization of the NOT1 scaffold. We used mutagenesis and functional studies to identify key residues in the NOT module required for mRNA deadenylation. These studies revealed that the interaction of NOT1 with NOT2- NOT3 heterodimers is required for deadenylation in D. melanogaster cells. Similarly, NOT3 mutants that do not interact with NOT1 cannot restore deadenylation in cells depleted of endogenous NOT3. Collectively, our data shed light on the assembly of the CCR4-NOT complex and provide the basis for dissecting the role of this complex in mRNA deadenylation
    corecore