131 research outputs found

    Phylogeny and biogeography of Croton alabamensis (Euphorbiaceae), a rare shrub from Texas and Alabama, using DNA sequence and AFLP data

    Full text link
    Croton alabamensis (Euphorbiaceae s.s. ) is a rare plant species known from several populations in Texas and Alabama that have been assigned to var. texensis and var. alabamensis , respectively. We performed maximum parsimony, maximum likelihood, and Bayesian analyses of DNA sequences from the nuclear ribosomal internal transcribed spacer (ITS) and 5.8S regions and chloroplast trn L- trn F regions from collections of the two varieties of C. alabamensis and from outgroup taxa. C. alabamensis emerges alone on a long branch that is sister to Croton section Corylocroton and the Cuban endemic genus Moacroton . Molecular clock analysis estimates the split of C. alabamensis from its closest relatives in sect. Corylocroton at 41 million years ago, whereas the split of the two varieties of C. alabamensis occurred sometime in the Quaternary. Amplified fragment length polymorphism (AFLP) analyses were performed using two selective primer pairs on a larger sampling of accessions (22 from Texas, 17 from Alabama) to further discriminate phylogenetic structure and quantify genetic diversity. Using both neighbour joining and minimum evolution, the populations from the Cahaba and Black Warrior watersheds in Alabama form two well-separated groups, and in Texas, geographically distinct populations are recovered from Fort Hood, Balcones Canyonlands, and Pace Bend Park. Most of the molecular variance is accounted for by variance within populations. Approximately equal variance is found among populations within states and between states (varieties). Genetic distance between the Texas populations is significantly less than genetic distance between the Alabama populations. Both sequence and AFLP data support the same relationships between the varieties of C. alabamensis and their outgroup, while the AFLP data provide better resolution among the different geographical regions where C. alabamensis occurs. The conservation implications of these findings are discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72311/1/j.1365-294X.2006.02970.x.pd

    Cosmological vacuum selection and metastable susy breaking

    Get PDF
    We study gauge mediation in a wide class of O'Raifeartaigh type models where supersymmetry breaking metastable vacuum is created by gravity and/or quantum corrections. We examine their thermal evolution in the early universe and the conditions under which the susy breaking vacuum can be selected. It is demonstrated that thermalization typically makes the metastable supersymmetry breaking cosmologically disfavoured but this is not always the case. Initial conditions with the spurion displaced from the symmetric thermal minimum and a small coupling to the messenger sector can result in the realization of the susy breaking vacuum even if the reheating temperature is high. We show that this can be achieved without jeopardizing the low energy phenomenology. In addition, we have found that deforming the models by a supersymmetric mass term for messengers in such a way that the susy breaking minimum and the susy preserving minima are all far away from the origin does not change the conclusions. The basic observations are expected to hold also in the case of models with an anomalous U(1) group.Comment: 28 pages, 4 figures, plain Latex, journal versio

    General Gauge Mediation at the Weak Scale

    Get PDF
    We completely characterize General Gauge Mediation (GGM) at the weak scale by solving all IR constraints over the full parameter space. This is made possible through a combination of numerical and analytical methods, based on a set of algebraic relations among the IR soft masses derived from the GGM boundary conditions in the UV. We show how tensions between just a few constraints determine the boundaries of the parameter space: electroweak symmetry breaking (EWSB), the Higgs mass, slepton tachyons, and left-handed stop/sbottom tachyons. While these constraints allow the left-handed squarks to be arbitrarily light, they place strong lower bounds on all of the right-handed squarks. Meanwhile, light EW superpartners are generic throughout much of the parameter space. This is especially the case at lower messenger scales, where a positive threshold correction to mhm_h coming from light Higgsinos and winos is essential in order to satisfy the Higgs mass constraint.Comment: 43 pages, 20 figures, mathematica package included in the sourc

    Star formation in the nearby universe: the ultraviolet and infrared points of view

    Get PDF
    This work presents the main ultraviolet (UV) and far-infrared (FIR) properties of two samples of nearby galaxies selected from the GALEX (λ=2315\lambda = 2315\AA, hereafter NUV) and IRAS (λ=60Ό\lambda = 60\mum) surveys respectively. They are built in order to get detection at both wavelengths for most of the galaxies. Star formation rate (SFR) estimators based on the UV and FIR emissions are compared. Systematic differences are found between the SFR estimators for individual galaxies based on the NUV fluxes corrected for dust attenuation and on the total IR luminosity. A combined estimator based on NUV and IR luminosities seems to be the best proxy over the whole range of values of SFR. Although both samples present similar average values of the birthrate parameter b, their star-formation-related properties are substantially different: NUV-selected galaxies tend to show larger values of bb for lower masses, SFRs and dust attenuations, supporting previous scenarios for the star formation history (SFH). Conversely, about 20% of the FIR-selected galaxies show high values of bb, SFR and NUV attenuation. These galaxies, most of them being LIRGs and ULIRGs, break down the downsizing picture for the SFH, however their relative contribution per unit volume is small in the local Universe. Finally, the cosmic SFR density of the local Universe is estimated in a consistent way from the NUV and IR luminosities.Comment: 43 pages, 13 figures, accepted for publication in Astrophysical Journal Supplement Serie

    Lentivirus-mediated gene therapy for Fabry disease

    Get PDF
    Enzyme and chaperone therapies are used to treat Fabry disease. Such treatments are expensive and require intrusive biweekly infusions; they are also not particularly efficacious. In this pilot, single-arm study (NCT02800070), five adult males with Type 1 (classical) phenotype Fabry disease were infused with autologous lentivirus-transduced, CD34+-selected, hematopoietic stem/progenitor cells engineered to express alpha-galactosidase A (α-gal A). Safety and toxicity are the primary endpoints. The non-myeloablative preparative regimen consisted of intravenous melphalan. No serious adverse events (AEs) are attributable to the investigational product. All patients produced α-gal A to near normal levels within one week. Vector is detected in peripheral blood and bone marrow cells, plasma and leukocytes demonstrate α-gal A activity within or above the reference range, and reductions in plasma and urine globotriaosylceramide (Gb3) and globotriaosylsphingosine (lyso-Gb3) are seen. While the study and evaluations are still ongoing, the first patient is nearly three years post-infusion. Three patients have elected to discontinue enzyme therapy

    Physics at a 100 TeV pp collider: beyond the Standard Model phenomena

    Full text link
    This report summarises the physics opportunities in the search and study of physics beyond the Standard Model at a 100 TeV pp collider.Comment: 196 pages, 114 figures. Chapter 3 of the "Physics at the FCC-hh" Repor
    • 

    corecore