90 research outputs found

    Constraining the Physical Properties of Near-Earth Object 2009 BD

    Get PDF
    We report on Spitzer Space Telescope IRAC observations of near-Earth object (NEO) 2009 BD that were carried out in support of the NASA Asteroid Robotic Retrieval Mission (ARRM) concept. We did not detect 2009 BD in 25 hrs of integration at 4.5 micron. Based on an upper-limit flux density determination from our data, we present a probabilistic derivation of the physical properties of this object. The analysis is based on the combination of a thermophysical model with an orbital model accounting for the non-gravitational forces acting upon the body. We find two physically possible solutions. The first solution shows 2009 BD as a 2.9+/-0.3 m diameter rocky body (rho = 2.9+/-0.5 g cm-3) with an extremely high albedo of 0.85(+0.20/-0.10) that is covered with regolith-like material, causing it to exhibit a low thermal inertia (Gamma = 30(+20/-10) SI units). The second solution suggests 2009 BD to be a 4+/-1 m diameter asteroid with pV = 0.45(+0.35/-0.15) that consists of a collection of individual bare rock slabs (Gamma = 2000+/-1000 SI units, rho = 1.7(+0.7/-0.4) g cm-3). We are unable to rule out either solution based on physical reasoning. 2009 BD is the smallest asteroid for which physical properties have been constrained, in this case using an indirect method and based on a detection limit, providing unique information on the physical properties of objects in the size range smaller than 10 m.Comment: 28 pages, 8 figures, accepted for publication in Ap

    Enhanced activity of massive black holes by stellar capture assisted by a self-gravitating accretion disc

    Full text link
    We study the probability of close encounters between stars from a nuclear cluster and a massive black hole. The gravitational field of the system is dominated by the black hole in its sphere of influence. It is further modified by the cluster mean field (a spherical term) and a gaseous disc/torus (an axially symmetric term) causing a secular evolution of stellar orbits via Kozai oscillations. Intermittent phases of large eccentricity increase the chance that stars become damaged inside the tidal radius of the central hole. Such events can produce debris and lead to recurring episodes of enhanced accretion activity. We introduce an effective loss cone and associate it with tidal disruptions during the high-eccentricity phases of the Kozai cycle. By numerical integration of the trajectories forming the boundary of the loss cone we determine its shape and volume. We also include the effect of relativistic advance of pericentre. The potential of the disc has the efffect of enlarging the loss cone and, therefore, the predicted number of tidally disrupted stars should grow by factor of ~10^2. On the other hand, the effect of the cluster mean potential together with the relativistic pericentre advance act against the eccentricity oscillations. In the end we expect the tidal disruption events to be approximately ten times more frequent in comparison with the model in which the three effects -- the cluster mean field, the relativistic pericentre advance, and the Kozai mechanism -- are all ignored. The competition of different influences suppresses the predicted star disruption rate as the black hole mass increases. Hence, the process under consideration is more important for intermediate-mass black holes, M_bh~10^4M_s.Comment: 10 pages, 5 figures; Astronomy & Astrophysics accepte

    Light-time computations for the BepiColombo radioscience experiment

    Get PDF
    The radioscience experiment is one of the on board experiment of the Mercury ESA mission BepiColombo that will be launched in 2014. The goals of the experiment are to determine the gravity field of Mercury and its rotation state, to determine the orbit of Mercury, to constrain the possible theories of gravitation (for example by determining the post-Newtonian (PN) parameters), to provide the spacecraft position for geodesy experiments and to contribute to planetary ephemerides improvement. This is possible thanks to a new technology which allows to reach great accuracies in the observables range and range rate; it is well known that a similar level of accuracy requires studying a suitable model taking into account numerous relativistic effects. In this paper we deal with the modelling of the space-time coordinate transformations needed for the light-time computations and the numerical methods adopted to avoid rounding-off errors in such computations.Comment: 14 pages, 7 figures, corrected reference

    Detection of Semi-Major Axis Drifts in 54 Near-Earth Asteroids: New Measurements of the Yarkovsky Effect

    Full text link
    We have identified and quantified semi-major axis drifts in Near-Earth Asteroids (NEAs) by performing orbital fits to optical and radar astrometry of all numbered NEAs. We focus on a subset of 54 NEAs that exhibit some of the most reliable and strongest drift rates. Our selection criteria include a Yarkovsky sensitivity metric that quantifies the detectability of semi-major axis drift in any given data set, a signal-to-noise metric, and orbital coverage requirements. In 42 cases, the observed drifts (~10^-3 AU/Myr) agree well with numerical estimates of Yarkovsky drifts. This agreement suggests that the Yarkovsky effect is the dominant non-gravitational process affecting these orbits, and allows us to derive constraints on asteroid physical properties. In 12 cases, the drifts exceed nominal Yarkovsky predictions, which could be due to inaccuracies in our knowledge of physical properties, faulty astrometry, or modeling errors. If these high rates cannot be ruled out by further observations or improvements in modeling, they would be indicative of the presence of an additional non-gravitational force, such as that resulting from a loss of mass of order a kilogram per second. We define the Yarkovsky efficiency f_Y as the ratio of the change in orbital energy to incident solar radiation energy, and we find that typical Yarkovsky efficiencies are ~10^-5.Comment: Accepted for publication by The Astronomical Journal. 42 pages, 8 figure

    On highly eccentric stellar trajectories interacting with a self-gravitating disc in Sgr A*

    Full text link
    We propose that Kozai's phenomenon is responsible for the long-term evolution of stellar orbits near a supermassive black hole. We pursue the idea that this process may be driven by a fossil accretion disc in the centre of our Galaxy, causing the gradual orbital decay of stellar trajectories, while setting some stars on highly elliptic orbits. We evolve model orbits that undergo repetitive transitions across the disc over the period of ~10^7 years. We assume that the disc mass is small compared to the central black hole, and its gravitational field comparatively weak, yet non-zero, and we set the present values of orbital parameters of the model star consistent with those reported for the S2 star in Sagittarius A*. We show how a model trajectory decays and circularizes, but at some point the mean eccentricity is substantially increased by Kozai's resonance. In consequence the orbital decay of highly eccentric orbits is accelerated. A combination of an axially symmetric gravitational field and dissipative environment can provide a mechanism explaining the origin of stars on highly eccentric orbits tightly bound to the central black hole. In the context of other S-stars, we can conclude that an acceptable mass of the disc (i.e., M_d<=1 percent of the black hole mass) is compatible with their surprisingly young age and small pericentre distances, provided these stars were formed at r<=10^5 gravitational radii.Comment: Accepted for publication in A&A; 9 pages, 6 figures. Revised version with minor language corrections (no change in content

    Conservation laws for systems of extended bodies in the first post-Newtonian approximation.

    Full text link
    The general form of the global conservation laws for NN-body systems in the first post-Newtonian approximation of general relativity is considered. Our approach applies to the motion of an isolated system of NN arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies and uses a framework recently introduced by Damour, Soffel and Xu (DSX). We succeed in showing that seven of the first integrals of the system (total mass-energy, total dipole mass moment and total linear momentum) can be broken up into a sum of contributions which can be entirely expressed in terms of the basic quantities entering the DSX framework: namely, the relativistic individual multipole moments of the bodies, the relativistic tidal moments experienced by each body, and the positions and orientations with respect to the global coordinate system of the local reference frames attached to each body. On the other hand, the total angular momentum of the system does not seem to be expressible in such a form due to the unavoidable presence of irreducible nonlinear gravitational effects.Comment: 18 pages, Revte

    Orbital decay of satellites crossing an accretion disc

    Full text link
    Motion of stellar-mass satellites is studied around a massive compact body which is surrounded by a gaseous slab of a stationary accretion disc. The satellites suffer an orbital decay due to hydrodynamical interaction with the disc medium (transitions across the disc, gap opening in the disc, density waves) and gravitational radiation. Arbitrary orbital eccentricities and inclinations are considered, and it is observed how the competing effects depend on the parameters of the model, namely, the mass and compactness of the orbiters, the osculating elements of their trajectories, and surface density of the disc. These effects have a visible impact on the satellites long-term motion, and they can produce observational consequences with respect to galactic central clusters. It is shown that the satellite-disc collisions do not impose serious restrictions on the results of gravitational wave experiments if the disc medium is diluted and the orbiter is compact but they are important in the case of environments with relatively high density. We thus concentrate on application to accretion flows in which the density is not negligible. We discuss the expected quasi-stationary structure of the cluster that is established on sub-parsec scales within the sphere of gravitational influence of the central object. Relevant to this region, we give the power-law slopes defining the radial profile of modified clusters and we show that their values are determined by satellite interaction with the accretion flow rather than their initial distribution.Comment: Astronomy & Astrophysics, in press; 11 pages and 6 figures, LaTeX2e (aa501.cls

    MarcoPolo-R: Near-Earth Asteroid sample return mission selected for the assessment study phase of the ESA program cosmic vision

    Get PDF
    This paper presents the sample return mission to a primitive Near-Earth Asteroid (NEA) MarcoPolo-R proposed to the European Space Agency in December 2010. MarcoPolo-R was selected in February 2011 with three other missions addressing different science objectives for the two-year Assessment Phase of the Medium-Class mission competition of the Cosmic Vision 2 program for launch in 2022. The baseline target of MarcoPolo-R is the binary NEA (175706) 1996 FG3, which offers an efficient operational and technical mission profile. A binary target also provides enhanced science return. The choice of a binary target allows several scientific investigations to occur more easily than through a single object, in particular regarding the fascinating geology and geophysics of asteroids. MarcoPolo-R will rendezvous with a primitive, organic-rich NEA, scientifically characterize it at multiple scales, and return a bulk sample to Earth for laboratory analyses. The MarcoPolo-R sample will provide a representative sample from the surface of a known asteroid with known geologic context, and will contribute to the inventory of primitive material that is probably missing from the meteorite collection. The MarcoPolo-R samples will thus contribute to the exploration of the origin of planetary materials and initial stages of habitable planet formation, to the identification and characterization of the organics and volatiles in a primitive asteroid and to the understanding of the unique geomorphology, dynamics and evolution of a binary asteroid that belongs to the Potentially Hazardous Asteroid (PHA) population

    Orbital effects of a monochromatic plane gravitational wave with ultra-low frequency incident on a gravitationally bound two-body system

    Full text link
    We analytically compute the long-term orbital variations of a test particle orbiting a central body acted upon by an incident monochromatic plane gravitational wave. We assume that the characteristic size of the perturbed two-body system is much smaller than the wavelength of the wave. Moreover, we also suppose that the wave's frequency is much smaller than the particle's orbital one. We make neither a priori assumptions about the direction of the wavevector nor on the orbital geometry of the planet. We find that, while the semi-major axis is left unaffected, the eccentricity, the inclination, the longitude of the ascending node, the longitude of pericenter and the mean anomaly undergo non-vanishing long-term changes. They are not secular trends because of the slow modulation introduced by the tidal matrix coefficients and by the orbital elements themselves. They could be useful to indepenedently constrain the ultra-low frequency waves which may have been indirectly detected in the BICEP2 experiment. Our calculation holds, in general, for any gravitationally bound two-body system whose characteristic frequency is much larger than the frequency of the external wave. It is also valid for a generic perturbation of tidal type with constant coefficients over timescales of the order of the orbital period of the perturbed particle.Comment: LaTex2e, 24 pages, no figures, no tables. Changes suggested by the referees include
    corecore