441 research outputs found
Study of the effect of neutrino oscillation on the supernova neutrino signal with the LVD detector
We present an update of our previous study (astro-ph/0112312) on how
oscillations affect the signal from a supernova core collapse observed in the
LVD detector at LNGS. In this paper we use a recent, more precise determination
of the cross section (astro-ph/0302055) to calculate the expected number of
inverse beta decay events, we introduce in the simulation also the -{\rm
Fe} interactions, we include the Earth matter effects and, finally, we study
also the inverted mass hierarchy case.Comment: 4 pages, 4 figures, to appear in the Proceedings of ICRC 200
Neutron-Proton Correlations in an Exactly Solvable Model
We examine isovector and isoscalar neutron-proton correlations in an exactly
solvable model based on the algebra SO(8). We look particularly closely at
Gamow-Teller strength and double beta decay, both to isolate the effects of the
two kinds of pairing and to test two approximation schemes: the renormalized
neutron-proton QRPA (RQRPA) and generalized BCS theory. When isoscalar pairing
correlations become strong enough a phase transition occurs and the dependence
of the Gamow-Teller beta+ strength on isospin changes in a dramatic and
unfamiliar way, actually increasing as neutrons are added to an N=Z core.
Renormalization eliminates the well-known instabilities that plague the QRPA as
the phase transition is approached, but only by unnaturally suppressing the
isoscalar correlations. Generalized BCS theory, on the other hand, reproduces
the Gamow-Teller strength more accurately in the isoscalar phase than in the
usual isovector phase, even though its predictions for energies are equally
good everywhere. It also mixes T=0 and T=1 pairing, but only on the isoscalar
side of the phase transition.Comment: 13 pages + 11 postscript figures, in RevTe
Error analysis of nuclear mass fits
We discuss the least-square and linear-regression methods, which are relevant
for a reliable determination of good nuclear-mass-model parameter sets and
their errors. In this perspective, we define exact and inaccurate models and
point out differences in using the standard error analyses for them. As an
illustration, we use simple analytic models for nuclear binding energies and
study the validity and errors of models' parameters, and uncertainties of its
mass predictions. In particular, we show explicitly the influence of
mass-number dependent weights on uncertainties of liquid-drop global
parameters.Comment: 10 RevTeX pages, 9 figures, submitted to Physical Review
Single- and double-beta decay Fermi-transitions in an exactly solvable model
An exactly solvable model suitable for the description of single and
double-beta decay processes of the Fermi-type is introduced. The model is
equivalent to the exact shell-model treatment of protons and neutrons in a
single j-shell. Exact eigenvalues and eigenvectors are compared to those
corresponding to the hamiltonian in the quasiparticle basis (qp) and with the
results of both the standard quasiparticle random phase approximation (QRPA)
and the renormalized one (RQRPA). The role of the scattering term of the
quasiparticle hamiltonian is analyzed. The presence of an exact eigenstate with
zero energy is shown to be related to the collapse of the QRPA. The RQRPA and
the qp solutions do not include this zero-energy eigenvalue in their spectra,
probably due to spurious correlations. The meaning of this result in terms of
symmetries is presented.Comment: 29 pages, 9 figures included in a Postsript file. Submitted to
Physcal Review
Neutrinoless double beta decay within Self-consistent Renormalized Quasiparticle Random Phase Approximation and inclusion of induced nucleon currents
The first, to our knowledge, calculation of neutrinoless double beta decay
(-decay) matrix elements within the self-consistent
renormalised Quasiparticle Random Phase Approximation (SRQRPA) is presented.
The contribution from the momentum-dependent induced nucleon currents to
-decay amplitude is taken into account. A detailed nuclear
structure study includes the discussion of the sensitivity of the obtained
SRQRPA results for -decay of Ge to the parameters of
nuclear Hamiltonian, two-nucleon short-range correlations and the truncation of
the model space. A comparision with the standard and renormalized QRPA is
presented. We have found a considerable reduction of the SRQRPA nuclear matrix
elements, resulting in less stringent limits for the effective neutrino mass.Comment: 13 pages, 3 figures, 1 tabl
Work–Family Conflict and Self-Rated Health: the Role of Gender and Educational Level. Baseline Data from the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil)
Purpose This study examined gender differences in the association between work–family conflict and self-rated health
and evaluated the effect of educational attainment.
Method We used baseline data from ELSA-Brasil, a cohort
study of civil servants from six Brazilian state capitals. Our
samples included 12,017 active workers aged 34–72 years.
Work–family conflict was measured by four indicators measuring effects of work on family, effects of family in work and
lack of time for leisure and personal care.
Results Women experienced more frequent work–family conflict, but in both genders, increased work–family conflict directly correlated with poorer self-rated health. Women’s educational level interacted with three work–family conflict indicators. For time-based effects of work on family, highly educated women had higher odds of suboptimal self-rated health
(OR=1.54; 95 % CI=1.19–1.99) than less educated women
(OR=1.14; 95 % CI=0.92–1.42). For strain-based effects of
work on family, women with higher and lower educatio
Study of the effect of neutrino oscillations on the supernova neutrino signal in the LVD detector
The LVD detector, located in the INFN Gran Sasso National Laboratory (Italy),
studies supernova neutrinos through the interactions with protons and carbon
nuclei in the liquid scintillator and interactions with the iron nuclei of the
support structure. We investigate the effect of neutrino oscillations in the
signal expected in the LVD detector. The MSW effect has been studied in detail
for neutrinos travelling through the collapsing star and the Earth. We show
that the expected number of events and their energy spectrum are sensitive to
the oscillation parameters, in particular to the mass hierarchy and the value
of , presently unknown. Finally we discuss the astrophysical
uncertainties, showing their importance and comparing it with the effect of
neutrino oscillations on the expected signal.Comment: Accepted for pubblication on Astroparticle Physics. 36 pages, 18
figure
Dyson Equation Approach to Many-Body Greens Functions and Self-Consistent RPA, First Application to the Hubbard Model
An approach for particle-hole correlation functions, based on the so-called
SCRPA, is developed. This leads to a fully self-consistent RPA-like theory
which satisfies the -sum rule and several other theorems. As a first step, a
simpler self-consistent approach, the renormalized RPA, is solved numerically
in the one-dimensional Hubbard model. The charge and the longitudinal spin
susceptibility, the momentum distribution and several ground state properties
are calculated and compared with the exact results. Especially at half filling,
our approach provides quite promising results and matches the exact behaviour
apart from a general prefactor. The strong coupling limit of our approach can
be described analytically.Comment: 35 pages, 18 Figures, Feynman diagrams as 10 additional eps-files,
revised and enhanced version, accepted in Phys. Rev.
- …