40,524 research outputs found
Surface temperature distribution along a thin liquid layer due to thermocapillary convection
The surface temperature distributions due to thermocapillary convections in a thin liquid layer with heat fluxes imposed on the free surface were investigated. The nondimensional analysis predicts that, when convection is important, the characteristics length scale in the flow direction L, and the characteristic temperature difference delta T sub o can be represented by L and delta T sub o approx. (A2Ma)/1/4 delta T sub R, respectively, where L sub R and delta sub R are the reference scales used in the conduction dominant situations with A denoting the aspect ratio and Ma the Marangoni number. Having L and delta sub o defined, the global surface temperature gradient delta sub o/L, the global thermocapillary driving force, and other interesting features can be determined. Numerical calculations involving a Gaussian heat flux distribution are presented to justify these two relations
Black Hole Production by Cosmic Rays
Ultra-high energy cosmic rays create black holes in scenarios with extra
dimensions and TeV-scale gravity. In particular, cosmic neutrinos will produce
black holes deep in the atmosphere, initiating quasi-horizontal showers far
above the standard model rate. At the Auger Observatory, hundreds of black hole
events may be observed, providing evidence for extra dimensions and the first
opportunity for experimental study of microscopic black holes. If no black
holes are found, the fundamental Planck scale must be above 2 TeV for any
number of extra dimensions.Comment: 4 pages, 4 figures, PRL versio
Eta-nucleon coupling constant in QCD with SU(3) symmetry breaking
We study the NN coupling constant using the method of QCD sum rules
starting from the vacuum-to-eta correlation function of the interpolating
fields of two nucleons. The matrix element of this correlation has been taken
with respect to nucleon spinors to avoid unwanted pole contribution. The
SU(3)-flavor symmetry breaking effects have been accounted for via the
-mass, s-quark mass and eta decay constant to leading order. Out of the
four sum rules obtained by taking the ratios of the two sum rules in
conjunction with the two sum rules in nucleon mass, three are found to give
mutually consistent results. We find the SU(3) breaking effects significant, as
large as 50% of the SU(3) symmetric part.Comment: 13 pages, 12 figure
Possible devil's staircase in the Kondo lattice CeSbSe
The temperature () - magnetic field () phase diagram for the tetragonal
layered compound CeSbSe, is determined from magnetization, specific heat, and
electrical resistivity measurements. This system exhibits complex magnetic
ordering at 3 K and the application of a magnetic field
results in a cascade of magnetically ordered states for 1.8 T
which are characterized by fractional integer size steps: i.e., a possible
Devil's staircase is observed. Electrical transport measurements show a weak
temperature dependence and large residual resistivity which suggest a small
charge carrier density and strong scattering from the -moments. These
features reveal Kondo lattice behavior where the -moments are incompletely
screened, resulting in a fine balanced magnetic interaction between different
Ce neighbors that is mediated by the RKKY interaction. This produces the nearly
degenerate magnetically ordered states that are accessed under an applied
magnetic field
General-relativistic coupling between orbital motion and internal degrees of freedom for inspiraling binary neutron stars
We analyze the coupling between the internal degrees of freedom of neutron
stars in a close binary, and the stars' orbital motion. Our analysis is based
on the method of matched asymptotic expansions and is valid to all orders in
the strength of internal gravity in each star, but is perturbative in the
``tidal expansion parameter'' (stellar radius)/(orbital separation). At first
order in the tidal expansion parameter, we show that the internal structure of
each star is unaffected by its companion, in agreement with post-1-Newtonian
results of Wiseman (gr-qc/9704018). We also show that relativistic interactions
that scale as higher powers of the tidal expansion parameter produce
qualitatively similar effects to their Newtonian counterparts: there are
corrections to the Newtonian tidal distortion of each star, both of which occur
at third order in the tidal expansion parameter, and there are corrections to
the Newtonian decrease in central density of each star (Newtonian ``tidal
stabilization''), both of which are sixth order in the tidal expansion
parameter. There are additional interactions with no Newtonian analogs, but
these do not change the central density of each star up to sixth order in the
tidal expansion parameter. These results, in combination with previous analyses
of Newtonian tidal interactions, indicate that (i) there are no large
general-relativistic crushing forces that could cause the stars to collapse to
black holes prior to the dynamical orbital instability, and (ii) the
conventional wisdom with respect to coalescing binary neutron stars as sources
of gravitational-wave bursts is correct: namely, the finite-stellar-size
corrections to the gravitational waveform will be unimportant for the purpose
of detecting the coalescences.Comment: 22 pages, 2 figures. Replaced 13 July: proof corrected, result
unchange
Magnetic properties of undoped Cu2O fine powders with magnetic impurities and/or cation vacancies
Fine powders of micron- and submicron-sized particles of undoped Cu2O
semiconductor, with three different sizes and morphologies have been
synthesized by different chemical processes. These samples include nanospheres
200 nm in diameter, octahedra of size 1 micron, and polyhedra of size 800 nm.
They exhibit a wide spectrum of magnetic properties. At low temperature, T = 5
K, the octahedron sample is diamagnetic. The nanosphere is paramagnetic. The
other two polyhedron samples synthesized in different runs by the same process
are found to show different magnetic properties. One of them exhibits weak
ferromagnetism with T_C = 455 K and saturation magnetization, M_S = 0.19 emu/g
at T = 5 K, while the other is paramagnetic. The total magnetic moment
estimated from the detected impurity concentration of Fe, Co, and Ni, is too
small to account for the observed magnetism by one to two orders of magnitude.
Calculations by the density functional theory (DFT) reveal that cation
vacancies in the Cu2O lattice are one of the possible causes of induced
magnetic moments. The results further predict that the defect-induced magnetic
moments favour a ferromagnetically coupled ground state if the local
concentration of cation vacancies, n_C, exceeds 12.5%. This offers a possible
scenario to explain the observed magnetic properties. The limitations of the
investigations in the present work, in particular in the theoretical
calculations, are discussed and possible areas for further study are suggested.Comment: 20 pages, 5 figures 2 tables, submitted to J Phys Condense Matte
Recommended from our members
A low-bandgap dimeric porphyrin molecule for 10% efficiency solar cells with small photon energy loss
Dimeric porphyrin molecules have great potential as donor materials for high performance bulk heterojunction organic solar cells (OSCs). Recently reported dimeric porphyrins bridged by ethynylenes showed power conversion efficiencies (PCEs) of more than 8%. In this study, we design and synthesize a new conjugated dimeric D-A porphyrin ZnP2BT-RH, in which the two porphyrin units are linked by an electron accepting benzothiadiazole (BT) unit. The introduction of the BT unit enhances the electron delocalization, resulting in a lower highest occupied molecular orbital (HOMO) energy level and an increased molar extinction coefficient in the near-infrared (NIR) region. The bulk heterojunction solar cells with ZnP2BT-RH as the donor material exhibit a high PCE of up to 10% with a low energy loss (Eloss) of only 0.56 eV. The 10% PCE is the highest for porphyrin-based OSCs with a conventional structure, and this Eloss is also the smallest among those reported for small molecule-based OSCs with a PCE higher than 10% to date
- …
