15,089 research outputs found
Network Effects on Scientific Collaborations
Background: The analysis of co-authorship network aims at exploring the impact of network structure on the outcome of scientific collaborations and research publications. However, little is known about what network properties are associated with authors who have increased number of joint publications and are being cited highly. Methodology/Principal Findings: Measures of social network analysis, for example network centrality and tie strength, have been utilized extensively in current co-authorship literature to explore different behavioural patterns of co-authorship networks. Using three SNA measures (i.e., degree centrality, closeness centrality and betweenness centrality), we explore scientific collaboration networks to understand factors influencing performance (i.e., citation count) and formation (tie strength between authors) of such networks. A citation count is the number of times an article is cited by other articles. We use co-authorship dataset of the research field of 'steel structure' for the year 2005 to 2009. To measure the strength of scientific collaboration between two authors, we consider the number of articles co-authored by them. In this study, we examine how citation count of a scientific publication is influenced by different centrality measures of its co-author(s) in a co-authorship network. We further analyze the impact of the network positions of authors on the strength of their scientific collaborations. We use both correlation and regression methods for data analysis leading to statistical validation. We identify that citation count of a research article is positively correlated with the degree centrality and betweenness centrality values of its co-author(s). Also, we reveal that degree centrality and betweenness centrality values of authors in a co-authorship network are positively correlated with the strength of their scientific collaborations. Conclusions/Significance: Authors' network positions in co-authorship networks influence the performance (i.e., citation count) and formation (i.e., tie strength) of scientific collaborations. © 2013 Uddin et al.published_or_final_versio
Aspects of Discrete Breathers and New Directions
We describe results concerning the existence proofs of Discrete Breathers
(DBs) in the two classes of dynamical systems with optical linear phonons and
with acoustic linear phonons. A standard approach is by continuation of DBs
from an anticontinuous limit. A new approach, which is purely variational, is
presented. We also review some numerical results on intraband DBs in random
nonlinear systems. Some non-conventional physical applications of DBs are
suggested. One of them is understanding slow relaxation properties of glassy
materials. Another one concerns energy focusing and transport in biomolecules
by targeted energy transfer of DBs. A similar theory could be used for
describing targeted charge transfer of nonlinear electrons (polarons) and, more
generally, for targeted transfer of several excitations (e.g. Davydov soliton).Comment: to appear in the Proceedings of NATO Advanced Research Workshop
"Nonlinearity and Disorder: Theory and Applications",
Tashkent,Uzbekistan,October 1-6, 200
Affine su(3) and su(4) fusion multiplicities as polytope volumes
Affine su(3) and su(4) fusion multiplicities are characterised as discretised
volumes of certain convex polytopes. The volumes are measured explicitly,
resulting in multiple sum formulas. These are the first polytope-volume
formulas for higher-rank fusion multiplicities. The associated threshold levels
are also discussed. For any simple Lie algebra we derive an upper bound on the
threshold levels using a refined version of the Gepner-Witten depth rule.Comment: 16 pages, LaTe
Modeling of Human Arm Energy Expenditure for Predicting Energy Optimal Trajectories
Human arm motion can inspire the trajectory planning of anthropomorphic robotic arms to achieve energy-efficient movements. An approach for predicting metabolic cost in the planar human arm motion by means of the biomechanical simulation is proposed in this work. Two biomechanical models, including an analytical model and a musculoskeletal model, are developed to implement the proposed approach. The analytical model is developed by modifying a human muscle expenditure model, in which the muscles are grouped as torque providers for computation efficiency. In the musculoskeletal model, the predication of metabolic cost is conducted on the basis of individual muscles. With the proposed approach, metabolic costs for parameterized target-reaching arm motions are calculated and utilized to identify optimal arm trajectories
Plant Biology and Biogeochemistry Department annual report 1998
The annual report from the Plant Biology and Biogeochemistry Department aims to provide a summary of our research and achievements and to give an idea of the research directions in the Department. The Department is engaged in research to establish the scientific basis for new methods in industrial and agricultural production. Through basic and applied experimental research, the Department aspires to develop methods and technology for industrial and agricultural production, exerting less stress and strain on the environment. The research approach in the Department is mainly experimental. In the autumn of 1997 it was decided to reorganize and expand the Department and in 1998 the Department includes six research programmes and special facilities. Selected departmental research activities during 1998 are introduced and reviewed in seven chapters: 1. Introduction, 2. Plant-Microbe Symbioses, 3. Plant Products and Recycling of Biomass, 4. DLF-Risø Biotechnology, 5. Plant Genetics and Epidemiology, 6. Biogeochemistry, 7. Plant Ecosystems and Nutrient Cycling. The Department’s contribution to education and training are presented. Lists of publications, papers accepted for publications, guest lectures, exchange of scientists, lectures and poster presentations at international meetings are included in the report. Names of the scientific and technical staff members, visiting scientists, Postdoctoral fellows, Ph.D. students, M.Sc. students and apprentices are also listed
Classroom dialogue and digital technologies: A scoping review
AbstractThis article presents a systematic scoping review of the literature focusing on interactions between classroom dialogue and digital technology. The first review of its type in this area, it both maps extant research and, through a process of thematic synthesis, investigates the role of technology in supporting classroom dialogue. In total, 72 studies (published 2000–2016) are analysed to establish the characteristics of existing evidence and to identify themes. The central intention is to enable researchers and others to access an extensive base of studies, thematically analysed, when developing insights and interpretations in a rapidly changing field of study. The discussion illustrates the interconnectedness of key themes, placing the studies in a methodological and theoretical context and examining challenges for the future.</jats:p
Initial results from the Caltech/DRSI balloon-borne isotope experiment
The Caltech/DSRI balloonborne High Energy Isotope Spectrometer Telescope (HEIST) was flown successfully from Palestine, Texas on 14 May, 1984. The experiment was designed to measure cosmic ray isotopic abundances from neon through iron, with incident particle energies from approx. 1.5 to 2.2 GeV/nucleon depending on the element. During approximately 38 hours at float altitude, 100,000 events were recorded with Z or = 6 and incident energies approx. 1.5 GeV/nucleon. We present results from the ongoing data analysis associated with both the preflight Bevalac calibration and the flight data
- …