3,810 research outputs found
Strongly aligned and oriented molecular samples at a kHz repetition rate
We demonstrate strong adiabatic laser alignment and mixed-field orientation
at kHz repetition rates. We observe degrees of alignment as large as
cos\Theta=0.94 at 1 kHz operation for iodobenzene. The experimental setup
consist of a kHz laser system simultaneously producing pulses of 30 fs (1.3 mJ)
and 450 ps (9 mJ). A cold 1 K state-selected molecular beam is produced at the
same rate by appropriate operation of an Even-Lavie valve. Quantum state
selection has been obtained using an electrostatic deflector. A camera and data
acquisition system records and analyzes the images on a single-shot basis. The
system is capable of producing, controlling (translation and rotation) and
analyzing cold molecular beams at kHz repetition rates and is, therefore,
ideally suited for the recording of ultrafast dynamics in so-called "molecular
movies".Comment: 6 pages, 4 figures, in press in Mol. Phys., accepted in February
2013, in final production (galley proofs done) since March 8, 2013, v3 only
adds publication dat
Two-state wave packet for strong field-free molecular orientation
We demonstrate strong laser-field-free orientation of absolute-ground-state
carbonyl sulfide molecules. The molecules are oriented by the combination of a
485-ps-long non-resonant laser pulse and a weak static electric field. The
edges of the laser pulse create a coherent superposition of two rotational
states resulting in revivals of strong transient molecular orientation after
the laser pulse. The experimentally attained degree of orientation of 0.6
corresponds to the theoretical maximum for mixing of the two states. Switching
off the dc field would provide the same orientation completely field-free
Strongly driven quantum pendulum of the OCS molecule
We demonstrate and analyze a strongly driven quantum pendulum in the angular
motion of stateselected and laser aligned OCS molecules. Raman-couplings during
the rising edge of a 50-picosecond laser pulse create a wave packet of pendular
states, which propagates in the confining potential formed by the
polarizability interaction between the molecule and the laser field. This
wave-packet dynamics manifests itself as pronounced oscillations in the degree
of alignment with a laser-intensity dependent period.Comment: 6 pages, 4 figure
Fluctuations, line tensions, and correlation times of nanoscale islands on surfaces
We analyze in detail the fluctuations and correlations of the (spatial)
Fourier modes of nano-scale single-layer islands on (111) fcc crystal surfaces.
We analytically show that the Fourier modes of the fluctuations couple due to
the anisotropy of the crystal, changing the power spectrum of the fluctuations,
and that the actual eigenmodes of the fluctuations are the appropriate linear
combinations of the Fourier modes. Using kinetic Monte Carlo simulations with
bond-counting parameters that best match realistic energy barriers for hopping
rates, we deduce absolute line tensions as a function of azimuthal orientation
from the analyses of the fluctuation of each individual mode. The
autocorrelation functions of these modes give the scaling of the correlation
times with wavelength, providing us with the rate-limiting kinetics driving the
fluctuations, here step-edge diffusion. The results for the energetic
parameters are in reasonable agreement with available experimental data for
Pb(111) surfaces, and we compare the correlation times of island-edge
fluctuations to relaxation times of quenched Pb crystallites.Comment: 11 pages, 8 figures; to appear in PRB 70, xxx (15 Dec 2004), changes
in MC and its implication
Simulating Windows-Based Cyber Attacks Using Live Virtual Machine Introspection
Static memory analysis has been proven a valuable technique for digital forensics. However, the memory capture technique halts the system causing the loss of important dynamic system data. As a result, live analysis techniques have emerged to complement static analysis. In this paper, a compiled memory analysis tool for virtualization (CMAT-V) is presented as a virtual machine introspection (VMI) utility to conduct live analysis during simulated cyber attacks. CMAT-V leverages static memory dump analysis techniques to provide live system state awareness. CMAT-V parses an arbitrary memory dump from a simulated guest operating system (OS) to extract user information, network usage, active process information and registry files. Unlike some VMI applications, CMAT-V bridges the semantic gap using derivation techniques. This provides increased operating system compatibility for current and future operating systems. This research demonstrates the usefulness of CMAT-V as a situational awareness tool during simulated cyber attacks and measures the overall performance of CMAT-V
P21<sup>WAF1/CIP1</sup> RNA expression in highly HIV-1 exposed, uninfected individuals
Some individuals remain HIV-1 antibody and PCR negative after repeated exposures to the virus, and are referred to as HIV-exposed seronegatives (HESN). However, the causes of resistance to HIV-1 infection in cases other than those with a homozygous CCR5Δ32 deletion are unclear. We hypothesized that human p21WAF1/CIP1 (a cyclin-dependent kinase inhibitor) could play a role in resistance to HIV-1 infection in HESN, as p21 expression has been associated with suppression of HIV-1 in elite controllers and reported to block HIV-1 integration in cell culture. We measured p21 RNA expression in PBMC from 40 HESN and 40 low exposure HIV-1 seroconverters (LESC) prior to their infection using a real-time PCR assay. Comparing the 20 HESN with the highest exposure risk (median = 111 partners/2.5 years prior to the 20 LESC with the lowest exposure risk (median = 1 partner/2.5 years prior), p21 expression trended higher in HESN in only one of two experiments (P = 0.11 vs. P = 0.80). Additionally, comparison of p21 expression in the top 40 HESN (median = 73 partners/year) and lowest 40 LESC (median = 2 partners/year) showed no difference between the groups (P = 0.84). There was a weak linear trend between risk of infection after exposure and increasing p21 gene expression (R2 = 0.02, P = 0.12), but again only in one experiment. Hence, if p21 expression contributes to the resistance to viral infection in HESN, it likely plays a minor role evident only in those with extremely high levels of exposure to HIV-1
Meteorological radar facility. Part 1: System design
A compilation of information regarding systems design of space shuttles used in meteorological radar probes is presented. Necessary radar equipment is delineated, while space system elements, calibration techniques, antenna systems and other subsystems are reviewed
Step Bunching with Alternation of Structural Parameters
By taking account of the alternation of structural parameters, we study
bunching of impermeable steps induced by drift of adatoms on a vicinal face of
Si(001). With the alternation of diffusion coefficient, the step bunching
occurs irrespective of the direction of the drift if the step distance is
large. Like the bunching of permeable steps, the type of large terraces is
determined by the drift direction. With step-down drift, step bunches grows
faster than those with step-up drift. The ratio of the growth rates is larger
than the ratio of the diffusion coefficients. Evaporation of adatoms, which
does not cause the step bunching, decreases the difference. If only the
alternation of kinetic coefficient is taken into account, the step bunching
occurs with step-down drift. In an early stage, the initial fluctuation of the
step distance determines the type of large terraces, but in a late stage, the
type of large terraces is opposite to the case of alternating diffusion
coefficient.Comment: 8pages, 16 figure
- …