14,333 research outputs found

    Facultative Altitudinal Movements by Mountain White-Crowned Sparrows (Zonotrichia Leucophrys Oriantha) in the Sierra Nevada

    Get PDF
    Mountain White-crowned Sparrows (Zonotrichia leucophrys oriantha) winter in Mexico and often arrive in the vicinity of their breeding grounds in the Sierra Nevada well before nesting is possible. Arrival at Tioga Pass, California (elevation 3,030 m), usually occurs in early May, but residual winter snow and adverse weather can delay nesting for weeks. We used radiotelemetry to determine whether prebreeding Mountain White-crowned Sparrows engaged in weather-related altitudinal movements during the waiting period between the end of spring migration and onset of breeding during 1995-2001, with a range of residual winter snowpacks. Interannual variation in arrival date and onset of egg laying was 18 and 41 days, respectively. We tracked females for two years and males for all seven years. During spring snowstorms (which occurred in four years), radiomarked individuals moved to lower elevation sites, where they often remained for several days. Departing birds left Tioga Pass by early afternoon and returned early in the morning after storms. More frequent storms during tracking increased the likelihood of facultative altitudinal movements, but heavier residual winter snowpack did not. Warm days increased the likelihood of birds returning to Tioga Pass from low elevation. This study demonstrates that facultative altitudinal movement behavior can be a common feature of spring arrival biology in montane-breeding birds. Received 1 November 2002, accepted 30 June 2004.Integrative Biolog

    Higher Order Terms in the Melvin-Morton Expansion of the Colored Jones Polynomial

    Full text link
    We formulate a conjecture about the structure of `upper lines' in the expansion of the colored Jones polynomial of a knot in powers of (q-1). The Melvin-Morton conjecture states that the bottom line in this expansion is equal to the inverse Alexander polynomial of the knot. We conjecture that the upper lines are rational functions whose denominators are powers of the Alexander polynomial. We prove this conjecture for torus knots and give experimental evidence that it is also true for other types of knots.Comment: 21 pages, 1 figure, LaTe

    Age- and activity-related differences in the abundance of Myosin essential and regulatory light chains in human muscle

    Get PDF
    Traditional methods for phenotyping skeletal muscle (e.g., immunohistochemistry) are labor-intensive and ill-suited to multixplex analysis, i.e., assays must be performed in a series. Addressing these concerns represents a largely unmet research need but more comprehensive parallel analysis of myofibrillar proteins could advance knowledge regarding age- and activity-dependent changes in human muscle. We report a label-free, semi-automated and time efficient LC-MS proteomic workflow for phenotyping the myofibrillar proteome. Application of this workflow in old and young as well as trained and untrained human skeletal muscle yielded several novel observations that were subsequently verified by multiple reaction monitoring (MRM).We report novel data demonstrating that human ageing is associated with lesser myosin light chain 1 content and greater myosin light chain 3 content, consistent with an age-related reduction in type II muscle fibers. We also disambiguate conflicting data regarding myosin regulatory light chain, revealing that age-related changes in this protein more closely reflect physical activity status than ageing per se. This finding reinforces the need to control for physical activity levels when investigating the natural process of ageing. Taken together, our data confirm and extend knowledge regarding age- and activity-related phenotypes. In addition, the MRM transitions described here provide a methodological platform that can be fine-tuned to suite multiple research needs and thus advance myofibrillar phenotyping

    The basic chemistry of exercise-induced DNA oxidation:oxidative damage, redox signalling and their interplay

    Get PDF
    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signalling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signalling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signalling and DNA damage, using hydroxyl radical (·OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signalling and damage. Indeed, H2O2 can participate in two electron signalling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signalling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signalling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation

    On the design of spiral sector accelerators

    Get PDF

    Will spin-relaxation times in molecular magnets permit quantum information processing?

    Get PDF
    Using X-band pulsed electron spin resonance, we report the intrinsic spin-lattice (T1T_1) and phase coherence (T2T_2) relaxation times in molecular nanomagnets for the first time. In Cr7M_7M heterometallic wheels, with MM = Ni and Mn, phase coherence relaxation is dominated by the coupling of the electron spin to protons within the molecule. In deuterated samples T2T_2 reaches 3 ÎĽ\mus at low temperatures, which is several orders of magnitude longer than the duration of spin manipulations, satisfying a prerequisite for the deployment of molecular nanomagnets in quantum information applications.Comment: 4 pages, 3 figures, in press at Physical Review Letter

    Switchable ErSc2N rotor within a C80 fullerene cage: An EPR and photoluminescence excitation study

    Get PDF
    Systems exhibiting both spin and orbital degrees of freedom, of which Er3+ is one, can offer mechanisms for manipulating and measuring spin states via optical excitations. Motivated by the possibility of observing photoluminescence and electron paramagnetic resonance from the same species located within a fullerene molecule, we initiated an EPR study of Er3+ in ErSc2N@C80. Two orientations of the ErSc2N rotor within the C80 fullerene are observed in EPR, consistent with earlier studies using photoluminescence excitation (PLE) spectroscopy. For some crystal field orientations, electron spin relaxation is driven by an Orbach process via the first excited electronic state of the 4I_15/2 multiplet. We observe a change in the relative populations of the two ErSc2N configurations upon the application of 532 nm illuminations, and are thus able to switch the majority cage symmetry. This photoisomerisation, observable by both EPR and PLE, is metastable, lasting many hours at 20 K.Comment: 4 pages, 4 figure
    • …
    corecore