7,364 research outputs found
The Cosmological Constant in the Quantum Multiverse
Recently, a new framework for describing the multiverse has been proposed
which is based on the principles of quantum mechanics. The framework allows for
well-defined predictions, both regarding global properties of the universe and
outcomes of particular experiments, according to a single probability formula.
This provides complete unification of the eternally inflating multiverse and
many worlds in quantum mechanics. In this paper we elucidate how cosmological
parameters can be calculated in this framework, and study the probability
distribution for the value of the cosmological constant. We consider both
positive and negative values, and find that the observed value is consistent
with the calculated distribution at an order of magnitude level. In particular,
in contrast to the case of earlier measure proposals, our framework prefers a
positive cosmological constant over a negative one. These results depend only
moderately on how we model galaxy formation and life evolution therein.Comment: 18 pages, 4 figures; matches the version published in Phys. Rev.
Null Strings in Schwarzschild Spacetime
The null string equations of motion and constraints in the Schwarzschild
spacetime are given. The solutions are those of the null geodesics of General
Relativity appended by a null string constraint in which the "constants of
motion" depend on the world-sheet spatial coordinate. Because of the extended
nature of a string, the physical interpretation of the solutions is completely
different from the point particle case. In particular, a null string is
generally not propagating in a plane through the origin, although each of its
individual points is. Some special solutions are obtained and their physical
interpretation is given. Especially, the solution for a null string with a
constant radial coordinate moving vertically from the south pole to the
north pole around the photon sphere, is presented. A general discussion of
classical null/tensile strings as compared to massless/massive particles is
given. For instance, tensile circular solutions with a constant radial
coordinate do not exist at all. The results are discussed in relation to
the previous literature on the subject.Comment: 16 pages, REVTEX, no figure
Stable and Unstable Circular Strings in Inflationary Universes
It was shown by Garriga and Vilenkin that the circular shape of nucleated
cosmic strings, of zero loop-energy in de Sitter space, is stable in the sense
that the ratio of the mean fluctuation amplitude to the loop radius is
constant. This result can be generalized to all expanding strings (of non-zero
loop-energy) in de Sitter space. In other curved spacetimes the situation,
however, may be different.
In this paper we develop a general formalism treating fluctuations around
circular strings embedded in arbitrary spatially flat FRW spacetimes. As
examples we consider Minkowski space, de Sitter space and power law expanding
universes. In the special case of power law inflation we find that in certain
cases the fluctuations grow much slower that the radius of the underlying
unperturbed circular string. The inflation of the universe thus tends to wash
out the fluctuations and to stabilize these strings.Comment: 15 pages Latex, NORDITA 94/14-
Three\u27s Company: Collaborative Instructional Design on a Librarian-Instructor Team
This session will describe a unique collaboration that resulted in development of a strategic research assignment design supported by relevant information literacy sessions. This effort stems from an existing relationship between research librarians and an instructor who was previously a graduate assistant in Research & Instruction Services and became an instructor of a general education course in Communication Sciences and Disorders. Through this collective, a synergistic arrangement developed where librarians contribute to research assignment design and the instructor contributes to developing the information literacy sessions to prepare students for finding, evaluating, and understanding relevant scholarly articles early in their college career. We will provide suggestions for developing librarian-instructor relationships that help identify student pain points as well as guide the development of customized classroom assignments relevant to beginning a studentâs research path. We will also introduce strategies we have found successful in helping students locate and synthesize relevant scholarly articles, in the classroom and online, for more effective information literacy session activities
Circular String-Instabilities in Curved Spacetime
We investigate the connection between curved spacetime and the emergence of
string-instabilities, following the approach developed by Loust\'{o} and
S\'{a}nchez for de Sitter and black hole spacetimes. We analyse the linearised
equations determining the comoving physical (transverse) perturbations on
circular strings embedded in Schwarzschild, Reissner-Nordstr\"{o}m and de
Sitter backgrounds. In all 3 cases we find that the "radial" perturbations grow
infinitely for (ring-collapse), while the "angular"
perturbations are bounded in this limit. For we find that
the perturbations in both physical directions (perpendicular to the string
world-sheet in 4 dimensions) blow up in the case of de Sitter space. This
confirms results recently obtained by Loust\'{o} and S\'{a}nchez who considered
perturbations around the string center of mass.Comment: 24 pages Latex + 2 figures (not included). Observatoire de Paris,
Meudon No. 9305
Bubble generation in a twisted and bent DNA-like model
The DNA molecule is modeled by a parabola embedded chain with long-range
interactions between twisted base pair dipoles. A mechanism for bubble
generation is presented and investigated in two different configurations. Using
random normally distributed initial conditions to simulate thermal
fluctuations, a relationship between bubble generation, twist and curvature is
established. An analytical approach supports the numerical results.Comment: 7 pages, 8 figures. Accepted for Phys. Rev. E (in press
Can gravitational infall energy lead to the observed velocity dispersion in DLAs?
The median observed velocity width v_90 of low-ionization species in damped
Ly-alpha systems is close to 90 km/s, with approximately 10% of all systems
showing v_90 > 210 km/s at z=3. We show that a relative shortage of such
high-velocity neutral gas absorbers in state-of-the-art galaxy formation models
is a fundamental problem, present both in grid-based and particle-based
numerical simulations. Using a series of numerical simulations of varying
resolution and box size to cover a wide range of halo masses, we demonstrate
that energy from gravitational infall alone is insufficient to produce the
velocity dispersion observed in damped Ly-alpha systems, nor does this
dispersion arise from an implementation of star formation and feedback in our
highest resolution (~ 45 pc) models, if we do not put any galactic winds into
our models by hand. We argue that these numerical experiments highlight the
need to separate dynamics of different components of the multiphase
interstellar medium at z=3.Comment: 12 Pages, 9 Figures, accepted to ApJ, printing in colour recommende
Synthesis and Recognition Properties of Higher Order Tetrathiafulvalene (Ttf) Calix N Pyrroles (N=4-6)
Two new benzoTTF-annulated calix[n]pyrroles (n = 5 and 6) were synthesized via a one-step acid catalyzed condensation reaction and fully characterized via single crystallographic analyses. As compared to the known tetra-TTF annulated calix[4]pyrrole, which is also produced under the conditions of the condensation reaction, the expanded calix[n]pyrroles (n = 5 and 6) are characterized by a larger cavity size and a higher number of TTF units (albeit the same empirical formula). Analysis of the binding isotherms obtained from UV-Vis spectroscopic titrations carried out in CHCl3 in the presence of both anionic (Cl-, Br-, I-, CH3COO-, H2PO4-, and HSO4-) and neutral (1,3,5-trinitrobenzene (TNB) and 2,4,6-trinitrotoluene (TNT)) substrates revealed that as a general rule the calix[6]pyrrole derivative proved to be the most efficient molecular receptor for anions, while the calix[4]pyrrole congener proves most effective for the recognition of TNB and TNT. These findings are rationalized in terms of the number of electron rich TTF subunits and NH hydrogen bond donor groups within the series, as well as an ability to adopt conformations suitable for substrate recognition, and are supported by solid state structural analyses.National Science Foundation CHE 1057904, 0741973Robert A. Welch Foundation F-1018Danish Natural Science Research Council (FNU) 272-08-0047, 11-106744WCU (World Class University) program of Korea R32-2010-10217-0Villum FoundationChemistr
- âŠ