4,468 research outputs found
Innovative observing strategy and orbit determination for Low Earth Orbit Space Debris
We present the results of a large scale simulation, reproducing the behavior
of a data center for the build-up and maintenance of a complete catalog of
space debris in the upper part of the low Earth orbits region (LEO). The
purpose is to determine the performances of a network of advanced optical
sensors, through the use of the newest orbit determination algorithms developed
by the Department of Mathematics of Pisa (DM). Such a network has been proposed
to ESA in the Space Situational Awareness (SSA) framework by Carlo Gavazzi
Space SpA (CGS), Istituto Nazionale di Astrofisica (INAF), DM, and Istituto di
Scienza e Tecnologie dell'Informazione (ISTI-CNR). The conclusion is that it is
possible to use a network of optical sensors to build up a catalog containing
more than 98% of the objects with perigee height between 1100 and 2000 km,
which would be observable by a reference radar system selected as comparison.
It is also possible to maintain such a catalog within the accuracy requirements
motivated by collision avoidance, and to detect catastrophic fragmentation
events. However, such results depend upon specific assumptions on the sensor
and on the software technologies
Orbit Determination with the two-body Integrals
We investigate a method to compute a finite set of preliminary orbits for
solar system bodies using the first integrals of the Kepler problem. This
method is thought for the applications to the modern sets of astrometric
observations, where often the information contained in the observations allows
only to compute, by interpolation, two angular positions of the observed body
and their time derivatives at a given epoch; we call this set of data
attributable. Given two attributables of the same body at two different epochs
we can use the energy and angular momentum integrals of the two-body problem to
write a system of polynomial equations for the topocentric distance and the
radial velocity at the two epochs. We define two different algorithms for the
computation of the solutions, based on different ways to perform elimination of
variables and obtain a univariate polynomial. Moreover we use the redundancy of
the data to test the hypothesis that two attributables belong to the same body
(linkage problem). It is also possible to compute a covariance matrix,
describing the uncertainty of the preliminary orbits which results from the
observation error statistics. The performance of this method has been
investigated by using a large set of simulated observations of the Pan-STARRS
project.Comment: 23 pages, 1 figur
Light-time computations for the BepiColombo radioscience experiment
The radioscience experiment is one of the on board experiment of the Mercury
ESA mission BepiColombo that will be launched in 2014. The goals of the
experiment are to determine the gravity field of Mercury and its rotation
state, to determine the orbit of Mercury, to constrain the possible theories of
gravitation (for example by determining the post-Newtonian (PN) parameters), to
provide the spacecraft position for geodesy experiments and to contribute to
planetary ephemerides improvement. This is possible thanks to a new technology
which allows to reach great accuracies in the observables range and range rate;
it is well known that a similar level of accuracy requires studying a suitable
model taking into account numerous relativistic effects. In this paper we deal
with the modelling of the space-time coordinate transformations needed for the
light-time computations and the numerical methods adopted to avoid rounding-off
errors in such computations.Comment: 14 pages, 7 figures, corrected reference
Nanofriction behavior of cluster-assembled carbon films
We have characterized the frictional properties of nanostructured (ns) carbon
films grown by Supersonic Cluster Beam Deposition (SCBD) via an Atomic
Force-Friction Force Microscope (AFM-FFM). The experimental data are discussed
on the basis of a modified Amonton's law for friction, stating a linear
dependence of friction on load plus an adhesive offset accounting for a finite
friction force in the limit of null total applied load. Molecular Dynamics
simulations of the interaction of the AFM tip with the nanostructured carbon
confirm the validity of the friction model used for this system. Experimental
results show that the friction coefficient is not influenced by the
nanostructure of the films nor by the relative humidity. On the other hand the
adhesion coefficient depends on these parameters.Comment: 22 pages, 6 figures, RevTex
Perspectives in measuring the PPN parameters beta and gamma in the Earth's gravitational fields with the CHAMP/GRACE models
The current bounds on the PPN parameters gamma and beta are of the order of
10^-4-10^-5. Various missions aimed at improving such limits by several orders
of magnitude have more or less recently been proposed like LATOR, ASTROD,
BepiColombo and GAIA. They involve the use of various spacecraft, to be
launched along interplanetary trajectories, for measuring the effects of the
solar gravity on the propagation of electromagnetic waves. In this paper we
investigate what is needed to measure the combination nu=(2+2gamma-beta)/3 of
the post-Newtonian gravitoelectric Einstein perigee precession of a test
particle to an accuracy of about 10^-5 with a pair of drag-free spacecraft in
the Earth's gravitational field. It turns out that the latest gravity models
from the dedicated CHAMP and GRACE missions would allow to reduce the
systematic error of gravitational origin just to this demanding level of
accuracy. In regard to the non-gravitational errors, the spectral noise density
of the drag-free sensors required to reach such level of accuracy would amounts
to 10^-8-10^-9 cm s^-2 Hz^-1/2 over very low frequencies. Although not yet
obtainable with the present technologies, such level of compensation is much
less demanding than those required for, e.g., LISA. As a by-product, an
independent measurement of the post-Newtonian gravitomagnetic Lense-Thirring
effect with a 0.9% accuracy would be possible as well. The forthcoming Earth
gravity models from CHAMP and GRACE will further reduce the systematic
gravitational errors in both of such tests.Comment: LaTex2e, 14 pages, 3 tables, no figures, 75 references. To appear in
Int. J. Mod. Phys.
Mitochondrial selfish elements and the evolution of biological novelties.
We report the present knowledge about RPHM21, a novel male-specific mitochondrial protein with a putative role in the paternal inheritance of sperm mitochondria in the Manila clam Ruditapes philippinarum, a species with doubly uniparental inheritance of mitochondria (DUI). We review all the available data on rphm21 transcription and translation, analyze in detail its female counterpart, RPHF22, discuss the homology with RPHM21, the putative function and origin, and analyze their polymorphism. The available evidence is compatible with a viral origin of RPHM21 and supports its activity during spermatogenesis. RPHM21 is progressively accumulated in mitochondria and nu- clei of spermatogenic cells, and we hypothesize it can influence mitochondrial inheritance and sex- ual differentiation. We propose a testable model that describes how the acquisition of selfish fea- tures by a mitochondrial lineage might have been responsible for the emergence of DUI, and for the evolution of separate sexes (gonochorism) from hermaphroditism. The appearance of DUI most likely entailed the invasion of at least 1 selfish element, and the extant DUI systems can be seen as resolved conflicts. It was proposed that hermaphroditism was the ancestral condition of bi- valves, and a correlation between DUI and gonochorism was documented. We hypothesize that DUI might have driven the shift from hermaphroditism to gonochorism, with androdioecy as transi- tion state. The invasion of sex-ratio distorters and the evolution of suppressors can prompt rapid changes among sex-determination mechanisms, and DUI might have been responsible for one of such changes in some bivalve species. If true, DUI would represent the first animal sex-determination system involving mtDNA-encoded proteins
A combined numerical approach for the thermal analysis of a piston water pump
The paper proposes a numerical model for the investigation of a piston water pump under different operating conditions. In particular, the lubricating system is analysed and modelled. The study accounts for the lubrication and friction phenomena, heat transfer, multiphase fluid approach and motion simulation. A computational thermo fluid dynamics approach has been adopted to develop a numerical tool able to simulate the behaviour of the oil during the machine working phases. The CFD approach simulates the moving metal components by means of moving meshes techniques; the friction phenomenon is estimated on the basis of formulations available in literature. The numerical model evaluates the heat transfer between moving metal parts and oil during the operating phases of the system. Furthermore, the heat transfer between oil and environment is calculated, accounting for conduction through the metal crankcase walls. A multiphase fluid approach is used for the simulation of the oil and air mixing during the crank rotation. The heat transfer coefficient predicted by the CFD approach are employed in a lumped and distributed numerical model; the reliability and accuracy of the proposed numerical approach is addressed and validated against experimental results. Experimental data have been collected by means of a thermographic camera and thermocouples. Finally, the tool's predictive capabilities are addressed by simulating different working conditions
- …