173 research outputs found
Electromagnetic wave absorption and structural properties of wide-band absorber made of graphene-printed glass-fibre composite
Lightweight composites combining electromagnetic wave absorption and excellent mechanical properties are required in spacecraft and aircraft. A one- dimensional metamaterial absorber consisting of a stack of glass fibre/epoxy layers and graphene nanoplatelets/epoxy films was proposed and fabricated through a facile air-spraying based printing technology and a liquid resin infusion method. The production process allows an optimum dispersion of graphene nanoplatelets, promoting adhesion and mechanical integration of the glass fibre/epoxy layers with the graphene nanoplatelets/epoxy films. According to experimental results, the proposed wide-band absorber provides a reflection coefficient lower than −10 dB in the range 8.5–16.7 GHz and an improvement of flexural modulus of more than 15%, with a total thickness of ∼1 mm. Outstanding electromagnetic wave absorption and mechanical performance make the proposed absorber more competitive in aeronautical and aerospace applications
Artificial Intelligence Applications in Cardiovascular Magnetic Resonance Imaging: Are We on the Path to Avoiding the Administration of Contrast Media?
In recent years, cardiovascular imaging examinations have experienced exponential growth due to technological innovation, and this trend is consistent with the most recent chest pain guidelines. Contrast media have a crucial role in cardiovascular magnetic resonance (CMR) imaging, allowing for more precise characterization of different cardiovascular diseases. However, contrast media have contraindications and side effects that limit their clinical application in determinant patients. The application of artificial intelligence (AI)-based techniques to CMR imaging has led to the development of non-contrast models. These AI models utilize non-contrast imaging data, either independently or in combination with clinical and demographic data, as input to generate diagnostic or prognostic algorithms. In this review, we provide an overview of the main concepts pertaining to AI, review the existing literature on non-contrast AI models in CMR, and finally, discuss the strengths and limitations of these AI models and their possible future development
Fast path and polarisation manipulation of telecom wavelength single photons in lithium niobate waveguide devices
We demonstrate fast polarisation and path control of photons at 1550 nm in
lithium niobate waveguide devices using the electro-optic effect. We show
heralded single photon state engineering, quantum interference, fast state
preparation of two entangled photons and feedback control of quantum
interference. These results point the way to a single platform that will enable
the integration of nonlinear single photon sources and fast reconfigurable
circuits for future photonic quantum information science and technology.Comment: 6 page
Gallium Arsenide (GaAs) Quantum Photonic Waveguide Circuits
Integrated quantum photonics is a promising approach for future practical and
large-scale quantum information processing technologies, with the prospect of
on-chip generation, manipulation and measurement of complex quantum states of
light. The gallium arsenide (GaAs) material system is a promising technology
platform, and has already successfully demonstrated key components including
waveguide integrated single-photon sources and integrated single-photon
detectors. However, quantum circuits capable of manipulating quantum states of
light have so far not been investigated in this material system. Here, we
report GaAs photonic circuits for the manipulation of single-photon and
two-photon states. Two-photon quantum interference with a visibility of 94.9
+/- 1.3% was observed in GaAs directional couplers. Classical and quantum
interference fringes with visibilities of 98.6 +/- 1.3% and 84.4 +/- 1.5%
respectively were demonstrated in Mach-Zehnder interferometers exploiting the
electro-optic Pockels effect. This work paves the way for a fully integrated
quantum technology platform based on the GaAs material system.Comment: 10 pages, 4 figure
MBSE Certification-Driven Design of a UAV MALE Configuration in the AGILE 4.0 Design Environment
This paper presents a certification-driven design process for an Unmanned Medium-Altitude-
Long-Endurance (UAV MALE) air vehicle, including on-board system design and placements,
electro-magnetic compatibility analysis, and thermal risk assessments. In literature, the
preliminary aircraft design phase is mainly driven by mission performances and structural
integrity aspects. However, the inclusion of other disciplines, like on-board system design or
electro-magnetic compatibility, or thermal analysis, can lead to more efficient and cost-
effective solutions and becomes paramount for non-conventional configurations like
unmanned vehicles or highly electrified platforms. In the EC-funded AGILE 4.0 project
(2019-2022), the traditional scope of the preliminary aircraft design is extended by including
domains that are usually considered only in later design phases, such as certification,
production and maintenance. In this paper, the AGILE 4.0 design environment supports the
definition and execution of a certification-driven design process of a UAV MALE
configuration, using a Model-Based Systems Engineering (MBSE) approach
Nitric oxide synthase-dependent NADPH-diaphorase activity in the optic lobes of male and female Ceratitis capitata mutants
Nitric oxide (NO) is acknowledged as a messenger molecule in the nervous system with a pivotal role in the modulation of the chemosensory information. It has been shown to be present in the optic lobes of several insect species. In the present study, we used males and females from four different strains of the medfly Ceratitis capitata (Diptera, Tephritidae): or; or,wp (both orange eyed); w,M360 and w,Heraklion (both white eyed), as models to further clarify the involvement of NO in the mutants' visual system and differences in its activity and localization in the sexes. Comparison of the localization pattern of NO synthase (NOS), through NADPH-diaphorase (NADPHd) staining, in the optic lobes of the four strains, revealed a stronger reaction intensity in the retina and in the neuropile region lamina than in medulla and lobula. Interestingly, the intensity of NADPHd staining differs, at least in some strains, in the optic lobes of the two sexes; all the areas are generally strongly labelled in the males of the or and w,M360 strains, whereas the w,Heraklion and or,wp mutants do not show evident sexdependent NADPHd staining. Taken as a whole, our data point to NO as a likely transmitter candidate in the visual information processes in insects, with a possible correlation among NOS distribution, eye pigmentation and visual function in C. capitata males. Moreover, NO could influence behavioural differences linked to vision in the two sexes
Mixing energy drinks and alcohol during adolescence impairs brain function: A study of rat hippocampal plasticity
In the last decades, the consumption of energy drinks has risen dramatically, especially among young people, adolescents and athletes, driven by the constant search for ergogenic effects, such as the increase in physical and cognitive performance. In parallel, mixed consumption of energy drinks and ethanol, under a binge drinking modality, under a binge drinking modality, has similarly grown among adolescents. However, little is known whether the combined consumption of these drinks, during adolescence, may have long-term effects on central function, raising the question of the risks of this habit on brain maturation. Our study was designed to evaluate, by behavioral, electrophysiological and molecular approaches, the long-term effects on hippocampal plasticity of ethanol (EtOH), energy drinks (EDs), or alcohol mixed with energy drinks (AMED) in a rat model of binge-like drinking adolescent administration. The results show that AMED binge-like administration produces adaptive hippocampal changes at the molecular level, associated with electrophysiological and behavioral alterations, which develop during the adolescence and are still detectable in adult animals. Overall, the study indicates that binge-like drinking AMED adolescent exposure represents a habit that may affect permanently hippocampal plasticity
Sam68 splicing regulation contributes to motor unit establishment in the postnatal skeletal muscle
RNA-binding proteins orchestrate the composite life of RNA molecules and impact most physiological processes, thus underlying complex phenotypes. The RNA-binding protein Sam68 regulates differentiation processes by modulating splicing, polyadenylation, and stability of select transcripts. Herein, we found that Sam68-/- mice display altered regulation of alternative splicing in the spinal cord of key target genes involved in synaptic functions. Analysis of the motor units revealed that Sam68 ablation impairs the establishment of neuromuscular junctions and causes progressive loss of motor neurons in the spinal cord. Importantly, alterations of neuromuscular junction morphology and properties in Sam68-/- mice correlate with defects in muscle and motor unit integrity. Sam68-/- muscles display defects in postnatal development, with manifest signs of atrophy. Furthermore, fast-twitch muscles in Sam68-/- mice show structural features typical of slow-twitch muscles, suggesting alterations in the metabolic and functional properties of myofibers. Collectively, our data identify a key role for Sam68 in muscle development and suggest that proper establishment of motor units requires timely expression of synaptic splice variants
Could dental school teaching clinics provide better care than regular private practices?
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149321/1/jicd12329.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/149321/2/jicd12329_am.pd
- …