53,461 research outputs found

    Properties of solutions of stochastic differential equations driven by the G-Brownian motion

    Full text link
    In this paper, we study the differentiability of solutions of stochastic differential equations driven by the GG-Brownian motion with respect to the initial data and the parameter. In addition, the stability of solutions of stochastic differential equations driven by the GG-Brownian motion is obtained

    Space-Based Gravity Detector for a Space Laboratory

    Get PDF
    A space-based superconducting gravitational low-frequency wave detector is considered. Sensitivity of the detector is sufficient to use the detector as a partner of other contemporary low-frequency detectors like LIGO and LISA. This device can also be very useful for experimental study of other effects predicted by theories of gravitation.Comment: 4 pages, 4 figures

    On the threshold-width of graphs

    Full text link
    The GG-width of a class of graphs GG is defined as follows. A graph G has GG-width k if there are k independent sets N1,...,Nk in G such that G can be embedded into a graph H in GG such that for every edge e in H which is not an edge in G, there exists an i such that both endpoints of e are in Ni. For the class TH of threshold graphs we show that TH-width is NP-complete and we present fixed-parameter algorithms. We also show that for each k, graphs of TH-width at most k are characterized by a finite collection of forbidden induced subgraphs

    Crystal Growth in Fluid Flow: Nonlinear Response Effects

    Full text link
    We investigate crystal-growth kinetics in the presence of strong shear flow in the liquid, using molecular-dynamics simulations of a binary-alloy model. Close to the equilibrium melting point, shear flow always suppresses the growth of the crystal-liquid interface. For lower temperatures, we find that the growth velocity of the crystal depends non-monotonically on the shear rate. Slow enough flow enhances the crystal growth, due to an increased particle mobility in the liquid. Stronger flow causes a growth regime that is nearly temperature-independent, in striking contrast to what one expects from the thermodynamic and equilibrium kinetic properties of the system, which both depend strongly on temperature. We rationalize these effects of flow on crystal growth as resulting from the nonlinear response of the fluid to strong shearing forces.Comment: to appear in Phys. Rev. Material

    Dilepton Production at Fermilab and RHIC

    Get PDF
    Some recent results from several fixed-target dimuon production experiments at Fermilab are presented. In particular, we discuss the use of Drell-Yan data to determine the flavor structure of the nucleon sea, as well as to deduce the energy-loss of partons traversing nuclear medium. Future dilepton experiments at RHIC could shed more light on the flavor asymmetry and possible charge-symmetry-violation of the nucleon sea. Clear evidence for scaling violation in the Drell-Yan process could also be revealed at RHIC.Comment: 5 pages, talk presented at the RIKEN-BNL Workshop on 'Hard Parton Physics in Nucleus-Nucleus collisions, March 199

    Stability of Majorana Fermions in Proximity-Coupled Topological Insulator Nanowires

    Full text link
    It has been shown previously that a finite-length topological insulator nanowire, proximity-coupled to an ordinary bulk s-wave superconductor and subject to a longitudinal applied magnetic field, realizes a one-dimensional topological superconductor with an unpaired Majorana fermion (MF) localized at each end of the nanowire. Here, we study the stability of these MFs with respect to various perturbations that are likely to occur in a physical realization of the proposed device. We show that the unpaired Majorana fermions persist in this system for any value of the chemical potential inside the bulk band gap of order 300 meV in Bi2_2Se3_3 by computing the Majorana number. From this calculation, we also show that the unpaired Majorana fermions persist when the magnetic flux through the nanowire cross-section deviates significantly from half flux quantum. Lastly, we demonstrate that the unpaired Majorana fermions persist in strongly disordered wires with fluctuations in the on-site potential ranging in magnitude up to several times the size of the bulk band gap. These results suggest this solid-state system should exhibit unpaired Majorana fermions under accessible conditions likely important for experimental study or future applications.Comment: 17 pages, 13 figure

    Strong laws of large numbers for sub-linear expectations

    Full text link
    We investigate three kinds of strong laws of large numbers for capacities with a new notion of independently and identically distributed (IID) random variables for sub-linear expectations initiated by Peng. It turns out that these theorems are natural and fairly neat extensions of the classical Kolmogorov's strong law of large numbers to the case where probability measures are no longer additive. An important feature of these strong laws of large numbers is to provide a frequentist perspective on capacities.Comment: 10 page

    Active role of elongation factor G in maintaining the mRNA reading frame during translation.

    Get PDF
    During translation, the ribosome moves along the mRNA one codon at a time with the help of elongation factor G (EF-G). Spontaneous changes in the translational reading frame are extremely rare, yet how the precise triplet-wise step is maintained is not clear. Here, we show that the ribosome is prone to spontaneous frameshifting on mRNA slippery sequences, whereas EF-G restricts frameshifting. EF-G helps to maintain the mRNA reading frame by guiding the A-site transfer RNA during translocation due to specific interactions with the tip of EF-G domain 4. Furthermore, EF-G accelerates ribosome rearrangements that restore the ribosome's control over the codon-anticodon interaction at the end of the movement. Our data explain how the mRNA reading frame is maintained during translation
    • …
    corecore