420 research outputs found
Multi-variable flood damage modelling with limited data using supervised learning approaches
Flood damage assessment is usually done with damage curves
only dependent on the water depth. Several recent studies have shown that
supervised learning techniques applied to a multi-variable data set can
produce significantly better flood damage estimates. However, creating and
applying a multi-variable flood damage model requires an extensive data set,
which is rarely available, and this is currently holding back the widespread
application of these techniques. In this paper we enrich a data set of
residential building and contents damage from the Meuse flood of 1993 in the
Netherlands, to make it suitable for multi-variable flood damage assessment.
Results from 2-D flood simulations are used to add information on flow
velocity, flood duration and the return period to the data set, and cadastre
data are used to add information on building characteristics. Next, several
statistical approaches are used to create multi-variable flood damage models,
including regression trees, bagging regression trees, random forest, and a
Bayesian network. Validation on data points from a test set shows that the
enriched data set in combination with the supervised learning techniques
delivers a 20 % reduction in the mean absolute error, compared to a
simple model only based on the water depth, despite several limitations of
the enriched data set. We find that with our data set, the tree-based methods
perform better than the Bayesian network
Risk Management and Adaptation for Extremes and Abrupt Changes in Climate and Oceans: Current Knowledge Gaps
Perspectives for risk management and adaptation have received ample attention in the recent IPCC Special Report on Changes in the Oceans and Cryosphere (SROCC). However, several knowledge gaps on the impacts of abrupt changes, cascading effects and compound extreme climatic events have been identified, and need further research. We focus on specific climate change risks identified in the SROCC report, namely: changes in tropical and extratropical cyclones; marine heatwaves; extreme ENSO events; and abrupt changes in the Atlantic Meridional Overturning Circulation. Several of the socioeconomic impacts from these events are not yet well-understood, and the literature is also sparse on specific recommendations for integrated risk management and adaptation options to reduce such risks. Also, past research has mostly focussed on concepts that have seen little application to real-world cases. We discuss relevant research needs and priorities for improved social-ecological impact assessment related to these major physical changes in the climate and oceans. For example, harmonised approaches are needed to better understand impacts from compound events, and cascading impacts across systems. Such information is essential to inform options for adaptation, governance and decision-making. Finally, we highlight research needs for developing transformative adaptation options and their governance
Deep Emissions Reductions and Mainstreaming of Mitigation and Adaptation: Key Findings
Climate policy "mainstreaming", "proofing" and "integration" are concepts that are increasingly appearing in a range of EU policy discussions, including those concerning the 2014-2020 Multi-Annual Financial Framework (MFF). They reflect the view that all policy sectors need to play a part in both reducing emissions and increasing resilience to unavoidable climate impacts. Broadly defined, mainstreaming involves including climate considerations in policy processes, improving the consistency among policy objectives, and where necessary, giving priority to climate-related goals above others. Although often couched in technical language, profound political challenges, at multiple levels of governance, lie at the heart of the mainstreaming agenda. The RESPONSES project analysed how far adaptation and mitigation was being mainstreamed in EU policies, and assessed the potential opportunities and limits for the future
Revising the Language Map of Korea
As linguists develop a deeper understanding of the properties of individual varieties of speech, they often find it necessary to reclassify dialects as independent languages, based on the criterion of intelligibility. This criterion is applied here to Jejueo, the traditional variety of speech used on Jeju Island, a province of the Republic of Korea. Although Jejueo has long been classified as a nonstandard dialect of Korean, evidence from an intelligibility experiment shows that it is not comprehensible to monolingual speakers of Korean and therefore should be treated as a separate language, in accordance with the usual practice within linguistics. This finding calls for a revision to the standard language map of Kore
Floods and climate: emerging perspectives for flood risk assessment and management
Flood estimation and flood management have traditionally been the domain of
hydrologists, water resources engineers and statisticians, and disciplinary
approaches abound. Dominant views have been shaped; one example is the
catchment perspective: floods are formed and influenced by the interaction
of local, catchment-specific characteristics, such as meteorology,
topography and geology. These traditional views have been beneficial, but
they have a narrow framing. In this paper we contrast traditional views with
broader perspectives that are emerging from an improved understanding of the
climatic context of floods. We come to the following conclusions: (1) extending the traditional
system boundaries (local catchment, recent decades, hydrological/hydraulic
processes) opens up exciting possibilities for better understanding and
improved tools for flood risk assessment and management. (2) Statistical
approaches in flood estimation need to be complemented by the search for the
causal mechanisms and dominant processes in the atmosphere, catchment and
river system that leave their fingerprints on flood characteristics.
(3) Natural climate variability leads to time-varying flood characteristics, and
this variation may be partially quantifiable and predictable, with the
perspective of dynamic, climate-informed flood risk management.
(4) Efforts are needed to fully account for factors that contribute to changes
in all three risk components (hazard, exposure, vulnerability) and to
better understand the interactions between society and floods. (5) Given the
global scale and societal importance, we call for the organization of an
international multidisciplinary collaboration and data-sharing initiative to
further understand the links between climate and flooding and to advance
flood research
emerging perspectives for flood risk assessment and management
Flood estimation and flood management have traditionally been the domain of
hydrologists, water resources engineers and statisticians, and disciplinary
approaches abound. Dominant views have been shaped; one example is the
catchment perspective: floods are formed and influenced by the interaction of
local, catchment-specific characteristics, such as meteorology, topography and
geology. These traditional views have been beneficial, but they have a narrow
framing. In this paper we contrast traditional views with broader perspectives
that are emerging from an improved understanding of the climatic context of
floods. We come to the following conclusions: (1) extending the traditional
system boundaries (local catchment, recent decades, hydrological/hydraulic
processes) opens up exciting possibilities for better understanding and
improved tools for flood risk assessment and management. (2) Statistical
approaches in flood estimation need to be complemented by the search for the
causal mechanisms and dominant processes in the atmosphere, catchment and
river system that leave their fingerprints on flood characteristics. (3)
Natural climate variability leads to time-varying flood characteristics, and
this variation may be partially quantifiable and predictable, with the
perspective of dynamic, climate-informed flood risk management. (4) Efforts
are needed to fully account for factors that contribute to changes in all
three risk components (hazard, exposure, vulnerability) and to better
understand the interactions between society and floods. (5) Given the global
scale and societal importance, we call for the organization of an
international multidisciplinary collaboration and data-sharing initiative to
further understand the links between climate and flooding and to advance flood
research
A pilot study using tactile cueing for gait rehabilitation following stroke
Recovery of walking function is a vital goal of post-stroke rehabilitation. Cueing using audio metronomes has been shown to improve gait, but can be impractical when interacting with others, particularly outdoors where awareness of vehicles and bicycles is essential. Audio is also unsuitable in environments with high background noise, or for those with a hearing impairment. If successful, lightweight portable tactile cueing has the potential to take the benefits of cueing out of the laboratory and into everyday life. The Haptic Bracelets are lightweight wireless devices containing a computer, accelerometers and low-latency vibrotactiles with a wide dynamic range. In this paper we review gait rehabilitation problems and existing solutions, and present an early pilot in which the Haptic Bracelets were applied to post-stroke gait rehabilitation. Tactile cueing during walking was well received in the pilot, and analysis of motion capture data showed immediate improvements in gait
Climate change and increased risk for the insurance sector: A global perspective and an assessment for the Netherlands.
Climate change is projected to increase the frequency and severity of extreme weather events. As a consequence, economic losses caused by natural catastrophes could increase significantly. This will have considerable consequences for the insurance sector. On the one hand, increased risk from weather extremes requires assessing expected changes in damage and including adequate climate change projections in risk management. On the other hand, climate change can also bring new business opportunities for insurers. This paper gives an overview of the consequences of climate change for the insurance sector and discusses several strategies to cope with and adapt to increased risks. The particular focus is on the Dutch insurance sector, as the Netherlands is extremely vulnerable to climate change, especially with regard to extreme precipitation and flooding. Current risk sharing arrangements for weather risks are examined while potential new business opportunities, adaptation strategies, and public-private partnerships are identified. © The Author(s) 2009
- …