86 research outputs found
PPAR-γ Thiazolidinedione Agonists and Immunotherapy in the Treatment of Brain Tumors
Thiazolidinediones (TZDs) are selective agonists of the peroxisome proliferator-activated receptor (PPAR) gamma, a transcription factor belonging to the superfamily of nuclear hormone receptors. Although activation of PPARγ by TZDs has been best characterized by its ability to regulate expression of genes associated with lipid metabolism, PPARγ agonists have other physiological effects including modulating pro- and anti-inflammatory gene expression and inducing apoptosis in several cell types including glioma cells and cell lines. Immunotherapeutic approaches to reducing brain tumors are focused on means to reduce the immunosuppressive responses of tumors which dampen the ability of cytotoxic T-lymphocytes to kill tumors. Initial studies from our lab show that combination of an immunotherapeutic strategy with TZD treatment provides synergistic benefit in animals with implanted tumors. The potential of this combined approach for treatment of brain tumors is reviewed in this report
Immune evasion in cancer: mechanistic basis and therapeutic strategies
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through “equilibrium” and “senescence” before re- emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, deregulated metabolism etc. In this review, we will discuss the advances made towards understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection
Immunotherapy for neuroblastoma using syngeneic fibroblasts transfected with IL-2 and IL-12
Cytokine-modified tumour cells have been used in clinical trials for immunotherapy of neuroblastoma, but primary tumour cells from surgical biopsies are difficult to culture. Autologous fibroblasts, however, are straightforward to manipulate in culture and easy to transfect using nonviral or viral vectors. Here we have compared the antitumour effect of fibroblasts and tumour cells transfected ex vivo to coexpress interleukin-2 (IL-2) and IL-12 in a syngeneic mouse model of neuroblastoma. Coinjection of cytokine-modified fibroblasts with Neuro-2A tumour cells abolished their in vivo tumorigenicity. Treatment of established tumours with three intratumoral doses of transfected fibroblasts showed a significant therapeutic effect with reduced growth or complete eradication of tumours in 90% of mice, associated with extensive leukocyte infiltration. Splenocytes recovered from vaccinated mice showed enhanced IL-2 production following Neuro-2A coculture, and increased cytotoxicity against Neuro-2A targets compared with controls. Furthermore, 100% of the tumour-free mice exhibited immune memory against tumour cells when rechallenged three months later. The potency of transfected fibroblasts was equivalent to that of tumour cells in all experiments. We conclude that syngeneic fibroblasts cotransfected with IL-2 and IL-12 mediate therapeutic effects against established disease, and are capable of generating immunological memory. Furthermore, as they are easier to recover and manipulate than autologous tumour cells, fibroblasts provide an attractive alternative immunotherapeutic strategy for the treatment of neuroblastoma
Designing a broad-spectrum integrative approach for cancer prevention and treatment
Targeted therapies and the consequent adoption of "personalized" oncology have achieved notablesuccesses in some cancers; however, significant problems remain with this approach. Many targetedtherapies are highly toxic, costs are extremely high, and most patients experience relapse after a fewdisease-free months. Relapses arise from genetic heterogeneity in tumors, which harbor therapy-resistantimmortalized cells that have adopted alternate and compensatory pathways (i.e., pathways that are notreliant upon the same mechanisms as those which have been targeted). To address these limitations, aninternational task force of 180 scientists was assembled to explore the concept of a low-toxicity "broad-spectrum" therapeutic approach that could simultaneously target many key pathways and mechanisms. Using cancer hallmark phenotypes and the tumor microenvironment to account for the various aspectsof relevant cancer biology, interdisciplinary teams reviewed each hallmark area and nominated a widerange of high-priority targets (74 in total) that could be modified to improve patient outcomes. For thesetargets, corresponding low-toxicity therapeutic approaches were then suggested, many of which werephytochemicals. Proposed actions on each target and all of the approaches were further reviewed forknown effects on other hallmark areas and the tumor microenvironment. Potential contrary or procar-cinogenic effects were found for 3.9% of the relationships between targets and hallmarks, and mixedevidence of complementary and contrary relationships was found for 7.1%. Approximately 67% of therelationships revealed potentially complementary effects, and the remainder had no known relationship. Among the approaches, 1.1% had contrary, 2.8% had mixed and 62.1% had complementary relationships. These results suggest that a broad-spectrum approach should be feasible from a safety standpoint. Thisnovel approach has potential to be relatively inexpensive, it should help us address stages and types ofcancer that lack conventional treatment, and it may reduce relapse risks. A proposed agenda for futureresearch is offered
Epiglottitis: It Hasn\u27t Gone Away.
AbstractDue to the potentially unforgiving nature of epiglottitis and supraglottitis, the clinician should have a firm understanding of the presentation, work up, and management of a patient presenting with worrisome symptoms.</jats:p
- …