100 research outputs found
Characterization of visual object representations in rat primary visual cortex
For most animal species, quick and reliable identification of visual objects is critical for survival. This applies also to rodents, which, in recent years, have become increasingly popular models of visual functions. For this reason in this work we analyzed how various properties of visual objects are represented in rat primary visual cortex (V1). The analysis has been carried out through supervised (classification) and unsupervised (clustering) learning methods. We assessed quantitatively the discrimination capabilities of V1 neurons by demonstrating how photometric properties (luminosity and object position in the scene) can be derived directly from the neuronal responses
Recommended from our members
DART.2: bidirectional synaptic pharmacology with thousandfold cellular specificity
Precision pharmacology aims to manipulate specific cellular interactions within complex tissues. In this pursuit, we introduce DART.2 (drug acutely restricted by tethering), a second-generation cell-specific pharmacology technology. The core advance is optimized cellular specificity-up to 3,000-fold in 15 min-enabling the targeted delivery of even epileptogenic drugs without off-target effects. Additionally, we introduce brain-wide dosing methods as an alternative to local cannulation and tracer reagents for brain-wide dose quantification. We describe four pharmaceuticals-two that antagonize excitatory and inhibitory postsynaptic receptors, and two that allosterically potentiate these receptors. Their versatility is showcased across multiple mouse-brain regions, including cerebellum, striatum, visual cortex and retina. Finally, in the ventral tegmental area, we find that blocking inhibitory inputs to dopamine neurons accelerates locomotion, contrasting with previous optogenetic and pharmacological findings. Beyond enabling the bidirectional perturbation of chemical synapses, these reagents offer intersectional precision-between genetically defined postsynaptic cells and neurotransmitter-defined presynaptic partners
Electrophysiological Heterogeneity of Fast-Spiking Interneurons: Chandelier versus Basket Cells
In the prefrontal cortex, parvalbumin-positive inhibitory neurons play a prominent role in the neural circuitry that subserves working memory, and alterations in these neurons contribute to the pathophysiology of schizophrenia. Two morphologically distinct classes of parvalbumin neurons that target the perisomatic region of pyramidal neurons, chandelier cells (ChCs) and basket cells (BCs), are generally thought to have the same "fast-spiking" phenotype, which is characterized by a short action potential and high frequency firing without adaptation. However, findings from studies in different species suggest that certain electrophysiological membrane properties might differ between these two cell classes. In this study, we assessed the physiological heterogeneity of fast-spiking interneurons as a function of two factors: species (macaque monkey vs. rat) and morphology (chandelier vs. basket). We showed previously that electrophysiological membrane properties of BCs differ between these two species. Here, for the first time, we report differences in ChCs membrane properties between monkey and rat. We also found that a number of membrane properties differentiate ChCs from BCs. Some of these differences were species-independent (e.g., fast and medium afterhyperpolarization, firing frequency, and depolarizing sag), whereas the differences in the first spike latency between ChCs and BCs were species-specific. Our findings indicate that different combinations of electrophysiological membrane properties distinguish ChCs from BCs in rodents and primates. Such electrophysiological differences between ChCs and BCs likely contribute to their distinctive roles in cortical circuitry in each species. © 2013 Povysheva et al
Cholinergic Activation of M2 Receptors Leads to Context-Dependent Modulation of Feedforward Inhibition in the Visual Thalamus
The temporal dynamics of inhibition within a neural network is a crucial determinant of information processing. Here, the authors describe in the visual thalamus how neuromodulation governs the magnitude and time course of inhibition in an input-dependent way
Intracellular chloride concentration influences the GABAA receptor subunit composition
GABAA receptors (GABAARs) exist as different subtype variants showing unique functional properties and defined spatio-temporal expression pattern. The molecular mechanisms underlying the developmental expression of different GABAAR are largely unknown. The intracellular concentration of chloride ([Cl−]i), the main ion permeating through GABAARs, also undergoes considerable changes during maturation, being higher at early neuronal stages with respect to adult neurons. Here we investigate the possibility that [Cl−]i could modulate the sequential expression of specific GABAARs subtypes in primary cerebellar neurons. We show that [Cl−]i regulates the expression of α3-1 and δ-containing GABAA receptors, responsible for phasic and tonic inhibition, respectively. Our findings highlight the role of [Cl−]i in tuning the strength of GABAergic responses by acting as an intracellular messenger
Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons
Inhibition is a physiological process that decreases the probability of a neuron generating an action potential. The two main mechanisms that have been proposed for inhibition are hyperpolarization and shunting. Shunting results from increased membrane conductance, and it reduces the neuron-firing probability. Here we show that ambient GABA, the main inhibitory neurotransmitter in the brain, can excite adult hippocampal interneurons. In these cells, the GABAA current reversal potential is depolarizing, making baseline tonic GABAA conductance excitatory. Increasing the tonic conductance enhances shunting-mediated inhibition, which eventually overpowers the excitation. Such a biphasic change in interneuron firing leads to corresponding changes in the GABAA-mediated synaptic signalling. The described phenomenon suggests that the excitatory or inhibitory actions of the current are set not only by the reversal potential, but also by the conductance
Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons
An activity-dependent long-lasting asynchronous release of GABA from identified fast-spiking inhibitory neurons in the neocortex can impair the reliability and temporal precision of activity in a cortical network
A biophysical model of endocannabinoid-mediated short term depression in hippocampal inhibition
Memories are believed to be represented in the synaptic pathways of vastly interconnected networks of neurons. The
plasticity of synapses, that is, their strengthening and weakening depending on neuronal activity, is believed to be the basis
of learning and establishing memories. An increasing number of studies indicate that endocannabinoids have a widespread
action on brain function through modulation of synap–tic transmission and plasticity. Recent experimental studies have
characterised the role of endocannabinoids in mediating both short- and long-term synaptic plasticity in various brain
regions including the hippocampus, a brain region strongly associated with cognitive functions, such as learning and
memory. Here, we present a biophysically plausible model of cannabinoid retrograde signalling at the synaptic level and
investigate how this signalling mediates depolarisation induced suppression of inhibition (DSI), a prominent form of shortterm
synaptic depression in inhibitory transmission in hippocampus. The model successfully captures many of the key
characteristics of DSI in the hippocampus, as observed experimentally, with a minimal yet sufficient mathematical
description of the major signalling molecules and cascades involved. More specifically, this model serves as a framework to
test hypotheses on the factors determining the variability of DSI and investigate under which conditions it can be evoked.
The model reveals the frequency and duration bands in which the post-synaptic cell can be sufficiently stimulated to elicit
DSI. Moreover, the model provides key insights on how the state of the inhibitory cell modulates DSI according to its firing
rate and relative timing to the post-synaptic activation. Thus, it provides concrete suggestions to further investigate
experimentally how DSI modulates and is modulated by neuronal activity in the brain. Importantly, this model serves as a
stepping stone for future deciphering of the role of endocannabinoids in synaptic transmission as a feedback mechanism
both at synaptic and network level
Nanostructural Diversity of Synapses in the Mammalian Spinal Cord
This work for funded by the Biotechnology and Biological Sciences Research Council (BBSRC; BB/M021793/1), RS MacDonald Charitable Trust, Motor Neurone Disease (MND) Association UK (Miles/Apr18/863-791), the Engineering and Physical Sciences Research Council (EPSRC; EP/P030017/1), Welcome Trust (202932/Z/16/Z), European Research Council (ERC; 695568) and the Simons Initiative for the Developing Brain.Functionally distinct synapses exhibit diverse and complex organisation at molecular and nanoscale levels. Synaptic diversity may be dependent on developmental stage, anatomical locus and the neural circuit within which synapses reside. Furthermore, astrocytes, which align with pre and post-synaptic structures to form “tripartite synapses”, can modulate neural circuits and impact on synaptic organisation. In this study, we aimed to determine which factors impact the diversity of excitatory synapses throughout the lumbar spinal cord. We used PSD95-eGFP mice, to visualise excitatory postsynaptic densities (PSDs) using high-resolution and super-resolution microscopy. We reveal a detailed and quantitative map of the features of excitatory synapses in the lumbar spinal cord, detailing synaptic diversity that is dependent on developmental stage, anatomical region and whether associated with VGLUT1 or VGLUT2 terminals. We report that PSDs are nanostructurally distinct between spinal laminae and across age groups. PSDs receiving VGLUT1 inputs also show enhanced nanostructural complexity compared with those receiving VGLUT2 inputs, suggesting pathway-specific diversity. Finally, we show that PSDs exhibit greater nanostructural complexity when part of tripartite synapses, and we provide evidence that astrocytic activation enhances PSD95 expression. Taken together, these results provide novel insights into the regulation and diversification of synapses across functionally distinct spinal regions and advance our general understanding of the ‘rules’ governing synaptic nanostructural organisation.Publisher PDFPeer reviewe
- …