171 research outputs found

    Hotspots of soil organic carbon storage revealed by laboratory hyperspectral imaging

    Get PDF
    Subsoil organic carbon (OC) is generally lower in content and more heterogeneous than topsoil OC, rendering it difficult to detect significant differences in subsoil OC storage. We tested the application of laboratory hyperspectral imaging with a variety of machine learning approaches to predict OC distribution in undisturbed soil cores. Using a bias-corrected random forest we were able to reproduce the OC distribution in the soil cores with very good to excellent model goodness-of-fit, enabling us to map the spatial distribution of OC in the soil cores at very high resolution (~53 × 53 µm). Despite a large increase in variance and reduction in OC content with increasing depth, the high resolution of the images enabled statistically powerful analysis in spatial distribution of OC in the soil cores. In contrast to the relatively homogeneous distribution of OC in the plough horizon, the subsoil was characterized by distinct regions of OC enrichment and depletion, including biopores which contained ~2–10 times higher SOC contents than the soil matrix in close proximity. Laboratory hyperspectral imaging enables powerful, fine-scale investigations of the vertical distribution of soil OC as well as hotspots of OC storage in undisturbed samples, overcoming limitations of traditional soil sampling campaigns

    In Helicobacter pylori auto-inducer-2, but not LuxS/MccAB catalysed reverse transsulphuration, regulates motility through modulation of flagellar gene transcription.

    Get PDF
    BACKGROUND: LuxS may function as a metabolic enzyme or as the synthase of a quorum sensing signalling molecule, auto-inducer-2 (AI-2); hence, the mechanism underlying phenotypic changes upon luxS inactivation is not always clear. In Helicobacter pylori, we have recently shown that, rather than functioning in recycling methionine as in most bacteria, LuxS (along with newly-characterised MccA and MccB), synthesises cysteine via reverse transsulphuration. In this study, we investigated whether and how LuxS controls motility of H. pylori, specifically if it has its effects via luxS-required cysteine metabolism or via AI-2 synthesis only. RESULTS: We report that disruption of luxS renders H. pylori non-motile in soft agar and by microscopy, whereas disruption of mccAHp or mccBHp (other genes in the cysteine provision pathway) does not, implying that the lost phenotype is not due to disrupted cysteine provision. The motility defect of the DeltaluxSHp mutant was complemented genetically by luxSHp and also by addition of in vitro synthesised AI-2 or 4, 5-dihydroxy-2, 3-pentanedione (DPD, the precursor of AI-2). In contrast, exogenously added cysteine could not restore motility to the DeltaluxSHp mutant, confirming that AI-2 synthesis, but not the metabolic effect of LuxS was important. Microscopy showed reduced number and length of flagella in the DeltaluxSHp mutant. Immunoblotting identified decreased levels of FlaA and FlgE but not FlaB in the DeltaluxSHp mutant, and RT-PCR showed that the expression of flaA, flgE, motA, motB, flhA and fliI but not flaB was reduced. Addition of DPD but not cysteine to the DeltaluxSHp mutant restored flagellar gene transcription, and the number and length of flagella. CONCLUSIONS: Our data show that as well as being a metabolic enzyme, H. pylori LuxS has an alternative role in regulation of motility by modulating flagellar transcripts and flagellar biosynthesis through production of the signalling molecule AI-2

    A Klebsiella pneumoniae antibiotic resistance mechanism that subdues host defences and promotes virulence

    Get PDF
    Klebsiella pneumoniae is an important cause of multidrug-resistant infections worldwide. Recent studies highlight the emergence of multidrug-resistant K.\ua0pneumoniae strains which show resistance to colistin, a last-line antibiotic, arising from mutational inactivation of the mgrB regulatory gene. However, the precise molecular resistance mechanisms of mgrB-associated colistin resistance and its impact on virulence remain unclear. Here, we constructed an mgrB gene K.\ua0pneumoniae mutant and performed characterisation of its lipid A structure, polymyxin and antimicrobial peptide resistance, virulence and inflammatory responses upon infection. Our data reveal that mgrB mutation induces PhoPQ-governed lipid A remodelling which confers not only resistance to polymyxins, but also enhances K. pneumoniae virulence by decreasing antimicrobial peptide susceptibility and attenuating early host defence response activation. Overall, our findings have important implications for patient management and antimicrobial stewardship, while also stressing antibiotic resistance development is not inexorably linked with subdued bacterial fitness and virulence

    Education for innovation and entrepreneurship in the food system: the Erasmus+ BoostEdu approach and results

    Get PDF
    Innovation and entrepreneurship are key factors to provide added value for food systems. Based on the findings of the Erasmus+ Strategic Partnership BoostEdu, the objective of this paper is to provide answers to three knowledge gaps: 1) identify the needs for innovation and entrepreneurship (I&E) in the food sector; 2) understand the best way to organize learning; 3) provide flexibility in turbulent times. BoostEdu aimed to provide a platform for continuing education within I&E for food professionals and was carried out through co-creation workshops and the development of an e-learning course. The results of the project in particular during the Covid-19 pandemics, highlighted the need for flexible access to modules that are complementary to other sources and based on a mix of theoretical concepts and practical experiences. The main lessons learned concern the need of co-creation and co-learning processes to identify suitable practices for the use of innovative digital technologies

    Grain-size variability in debris flows of different runout lengths, Wenchuan, China

    Get PDF
    Debris-flow grain-size distributions (GSDs) control runout length and mobility. Wide, bimodal GSDs and those containing a higher proportion of silt and clay have been shown experimentally to increase runout length. However, the relationship between grain size and mobility has not been well established in field conditions. Here, we compared the grain-size characteristics of two debris flows with considerably different runout lengths (1.5 km vs. 8 km) to understand the role of grain size in governing runout. The two debris flows were triggered in the same rainfall event from coseismic landslide debris generated in the 2008 Wenchuan earthquake in catchments with similar lithology and topography. We compared the deposited GSDs and their spatial patterns using our rare, three-dimensional GSD datasets. Surprisingly, the proportions of each size fraction deposited by the two flows were statistically indistinguishable. The spatial pattern of grain size differed between the two flows, with evidence of inverse grading only preserved in the smaller deposit. From these observations, we can infer that the GSDs of both flows were determined by the coseismic landslide source material, and that there was little difference in the GSDs of material entrained as the flows bulked. The contrasting spatial distributions of grains indicated that different internal processes were dominant within the two flows. These findings demonstrate that where GSDs are dominated by coarse grains and are governed by similar source conditions, grain size plays a lesser role relative to sediment supply and hydrology in controlling the runout length of large catastrophic post-earthquake debris flows

    Phosphorylated DegU Manipulates Cell Fate Differentiation in the <i>Bacillus subtilis</i> Biofilm<em/>

    Get PDF
    Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegU∼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegU∼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegU∼P functions to increase the level of Spo0A∼P, driving cell fate differentiation toward the terminal developmental process of sporulation

    Jarlmanns saga og Hermanns: A Translation

    Get PDF
    Agnete Lothʼs edition of the longer version of Jarlmanns saga og Hermanns included an accompanying English paraphrase (by Gillian Fellows Jensen), but there has never been a full translation into English, much less of the shorter version as edited by Hugo Rydberg. We rectify that omission here, providing a normalized text of Rydbergʼs edition with an English translation alongside in the hopes of making this entertaining saga more accessible to a wider audience

    A Minimal Threshold of c-di-GMP Is Essential for Fruiting Body Formation and Sporulation in Myxococcus xanthus

    Get PDF
    Generally, the second messenger bis-(3’-5’)-cyclic dimeric GMP (c-di-GMP) regulates the switch between motile and sessile lifestyles in bacteria. Here, we show that c-di-GMP is an essential regulator of multicellular development in the social bacterium Myxococcus xanthus. In response to starvation, M. xanthus initiates a developmental program that culminates in formation of spore-filled fruiting bodies. We show that c-di-GMP accumulates at elevated levels during development and that this increase is essential for completion of development whereas excess c-di-GMP does not interfere with development. MXAN3735 (renamed DmxB) is identified as a diguanylate cyclase that only functions during development and is responsible for this increased c-di-GMP accumulation. DmxB synthesis is induced in response to starvation, thereby restricting DmxB activity to development. DmxB is essential for development and functions downstream of the Dif chemosensory system to stimulate exopolysaccharide accumulation by inducing transcription of a subset of the genes encoding proteins involved in exopolysaccharide synthesis. The developmental defects in the dmxB mutant are non-cell autonomous and rescued by co-development with a strain proficient in exopolysaccharide synthesis, suggesting reduced exopolysaccharide accumulation as the causative defect in this mutant. The NtrC-like transcriptional regulator EpsI/Nla24, which is required for exopolysaccharide accumulation, is identified as a c-diGMP receptor, and thus a putative target for DmxB generated c-di-GMP. Because DmxB can be—at least partially—functionally replaced by a heterologous diguanylate cyclase, these results altogether suggest a model in which a minimum threshold level of c-di-GMP is essential for the successful completion of multicellular development in M. xanthus
    corecore