61 research outputs found

    Observation of electronic and atomic shell effects in gold nanowires

    Get PDF
    The formation of gold nanowires in vacuum at room temperature reveals a periodic spectrum of exceptionally stable diameters. This is identified as shell structure similar to that which was recently discovered for alkali metals at low temperatures. The gold nanowires present two competing `magic' series of stable diameters, one governed by electronic structure and the other by the atomic packing.Comment: 4 pages, 4 figure

    Theoretical study of the (3x2) reconstruction of beta-SiC(001)

    Full text link
    By means of ab initio molecular dynamics and band structure calculations, as well as using calculated STM images, we have singled out one structural model for the (3x2) reconstruction of the Si-terminated (001) surface of cubic SiC, amongst several proposed in the literature. This is an alternate dimer-row model, with an excess Si coverage of 1/3, yielding STM images in good accord with recent measurements [F.Semond et al. Phys. Rev. Lett. 77, 2013 (1996)].Comment: To be published in PRB Rapid. Com

    Modeling the series of (n x 2) Si-rich reconstructions of beta-SiC(001): a prospective atomic wire?

    Full text link
    We perform ab initio plane wave supercell density functional calculations on three candidate models of the (3 x 2) reconstruction of the beta-SiC(001) surface. We find that the two-adlayer asymmetric-dimer model (TAADM) is unambiguously favored for all reasonable values of Si chemical potential. We then use structures derived from the TAADM parent to model the silicon lines that are observed when the (3 x 2) reconstruction is annealed (the (n x 2) series of reconstructions), using a tight-binding method. We find that as we increase n, and so separate the lines, a structural transition occurs in which the top addimer of the line flattens. We also find that associated with the separation of the lines is a large decrease in the HOMO-LUMO gap, and that the HOMO state becomes quasi-one-dimensional. These properties are qualititatively and quantitatively different from the electronic properties of the original (3 x 2) reconstruction.Comment: 22 pages, including 6 EPS figure

    Direct Determination of the Effect of Strain on Domain Morphology in Ferroelectric Superlattices with Scanning Probe Microscopy

    Get PDF
    A variant of piezo force microscopy was used to characterize the effect of strain on polarization in [(BaTiO3)n/(SrTiO3)m]p superlattices. The measurements were compared to theoretical predictions based on phase-field calculations. When polarization is constrained to be perpendicular to the substrate, the measured polarization and domain morphology agree quantitatively with the predictions. This case allows the presence of an internal electric field in the thin film to be identified. The measured trend in piezoelectric response with strain state was in qualitative agreement with predictions, and the differences were consistent with the presence of internal electrical fields. Clear differences in domain morphology with strain were observed; and in some cases, the lateral anisotropic strain appeared to influence the domain morphology. The differences in magnitude and morphology were attributed to the internal electric fields and anisotropic strains

    Prediction of ferroelectricity in BaTiO3/SrTiO3 superlattices with domains

    Get PDF
    The phase transitions of superlattices into single- and multidomain states were studied using a mesoscale phase-field model incorporating structural inhomogeneity, micromechanics, and electrostatics. While the predictions of transition temperatures of BaTiO3/SrTiO3 superlattices into multidomains show remarkably good, quantitative agreement with ultraviolet Raman spectroscopic and variable-temperature x-ray diffraction measurements, the single-domain assumption breaks down for superlattices in which the nonferroelectric layer thickness exceeds the characteristic domain size in the ferroelectric layers.open463

    Interfacial coherency and ferroelectricity of BaTiO(3)/SrTiO(3) superlattice films

    Get PDF
    We studied the phase transitions, domain morphologies, and polarizations in BaTiO(3)/SrTiO(3) superlattices grown on SrTiO(3) substrates. Using the phase field approach, we discovered the remarkable influence of film/substrate interfacial coherency on the ferroelectricity of the SrTiO(3) layers within a superlattice: it is an orthorhombic ferroelectric for an incoherent interface while it exhibits only induced polarization by the adjacent BaTiO(3) layers for a coherent interface. We presented the domain morphologies within individual BaTiO(3) and SrTiO(3) layers which have different ferroelectric symmetries. The results are compared to ultraviolet Raman spectroscopy and variable temperature x-ray diffraction measurements.open312

    Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics

    Full text link
    We review our recent efforts in building atom-scale quantum-dot cellular automata circuits on a silicon surface. Our building block consists of silicon dangling bond on a H-Si(001) surface, which has been shown to act as a quantum dot. First the fabrication, experimental imaging, and charging character of the dangling bond are discussed. We then show how precise assemblies of such dots can be created to form artificial molecules. Such complex structures can be used as systems with custom optical properties, circuit elements for quantum-dot cellular automata, and quantum computing. Considerations on macro-to-atom connections are discussed.Comment: 28 pages, 19 figure

    Ferromagnetism and conductivity in atomically thin SrRuO3

    Get PDF
    Atomically thin ferromagnetic and conducting electron systems are highly desired for spintronics, because they can be controlled with both magnetic and electric fields. We present (SrRuO3)1-(SrTiO3)5 superlattices and single-unit-cell-thick SrRuO3 samples that are capped with SrTiO3. We achieve samples of exceptional quality. In these samples, the electron systems comprise only a single RuO2 plane. We observe conductivity down to 50 mK, a ferromagnetic state with a Curie temperature of 25 K, and signals of magnetism persisting up to approximately 100 K.Comment: The version published at Phys. Rev. X (open access) contains a large amount of additional material compared to the version published her
    corecore