351 research outputs found

    Molecular hydrogen beyond the optical edge of an isolated spiral galaxy

    Full text link
    We know little about the outermost portions of galaxies because there is little light coming from them. We do know that in many cases atomic hydrogen (HI) extends well beyond the optical radius \cite{Casertano91}. In the centers of galaxies, however, molecular hydrogen (H2) usually dominates by a large factor, raising the question of whether H2 is abundant also in the outer regions but hitherto unseen.Here we report the detection of emission from carbon monoxide (CO), the most abundant tracer of H2, beyond the optical radius of the nearby galaxy NGC 4414. The molecular clouds probably formed in the regions of relatively high HI column density and in the absence of spiral density waves. The relative strength of the lines from the two lowest rotational levels indicates that both the temperature and density of the H2 are quite low compared to conditions closer to the center. The inferred surface density of the molecular material continues the monotonic decrease from the inner regions. We conclude that while molecular clouds can form in the outer region of this galaxy, there is little mass associated with them.Comment: 3 Nature page

    Uncovering Spiral Structure in Flocculent Galaxies

    Get PDF
    We present K'(2.1 micron) observations of four nearby flocculent spirals, which clearly show low-level spiral structure and suggest that kiloparsec-scale spiral structure is more prevalent in flocculent spirals than previously supposed. In particular, the prototypical flocculent spiral NGC 5055 is shown to have regular, two-arm spiral structure to a radius of 4 kpc in the near infrared, with an arm-interarm contrast of 1.3. The spiral structure in all four galaxies is weaker than that in grand design galaxies. Taken in unbarred galaxies with no large, nearby companions, these data are consistent with the modal theory of spiral density waves, which maintains that density waves are intrinsic to the disk. As an alternative, mechanisms for driving spiral structure with non-axisymmetric perturbers are also discussed. These observations highlight the importance of near infrared imaging for exploring the range of physical environments in which large-scale dynamical processes, such as density waves, are important.Comment: 12 pages AASTeX; 3 compressed PS figures can be retrieved from ftp://ftp.astro.umd.edu/pub/michele as file thornley.tar (1.6Mbytes). Accepted to Ap.J. Letters.(Figures now also available here, and from ftp://ftp.astro.umd.edu/pub/michele , in GIF format.

    Molecular Gas in Elliptical Galaxies: Distribution and Kinematics

    Full text link
    I present interferometric images (approx. 7" resolution) of CO emission in five elliptical galaxies and nondetections in two others. These data double the number of elliptical galaxies whose CO emission has been fully mapped. The sample galaxies have 10^8 to 5x10^9 solar masses of molecular gas distributed in mostly symmetric rotating disks with diameters of 2 to 12 kpc. Four out of the five molecular disks show remarkable alignment with the optical major axes of their host galaxies. The molecular masses are a few percent of the total dynamical masses which are implied if the gas is on circular orbits. If the molecular gas forms stars, it will make rotationally supported stellar disks which will be very similar in character to the stellar disks now known to be present in many ellipticals. Comparison of stellar kinematics to gas kinematics in NGC 4476 implies that the molecular gas did not come from internal stellar mass loss because the specific angular momentum of the gas is about three times larger than that of the stars.Comment: 47 pages, 6 tables, 27 figures. Accepted by AJ, scheduled for August 200

    Far Infrared and Submillimeter Emission from Galactic and Extragalactic Photo-Dissociation Regions

    Get PDF
    Photodissociation Region (PDR) models are computed over a wide range of physical conditions, from those appropriate to giant molecular clouds illuminated by the interstellar radiation field to the conditions experienced by circumstellar disks very close to hot massive stars. These models use the most up-to-date values of atomic and molecular data, the most current chemical rate coefficients, and the newest grain photoelectric heating rates which include treatments of small grains and large molecules. In addition, we examine the effects of metallicity and cloud extinction on the predicted line intensities. Results are presented for PDR models with densities over the range n=10^1-10^7 cm^-3 and for incident far-ultraviolet radiation fields over the range G_0=10^-0.5-10^6.5, for metallicities Z=1 and 0.1 times the local Galactic value, and for a range of PDR cloud sizes. We present line strength and/or line ratio plots for a variety of useful PDR diagnostics: [C II] 158 micron, [O I] 63 and 145 micron, [C I] 370 and 609 micron, CO J=1-0, J=2-1, J=3-2, J=6-5 and J=15-14, as well as the strength of the far-infrared continuum. These plots will be useful for the interpretation of Galactic and extragalactic far infrared and submillimeter spectra observable with ISO, SOFIA, SWAS, FIRST and other orbital and suborbital platforms. As examples, we apply our results to ISO and ground based observations of M82, NGC 278, and the Large Magellenic Cloud.Comment: 54 pages, 20 figures, accepted for publication in The Astrophysical Journa

    A Deep Look at the Emission-Line Nebula in Abell 2597

    Get PDF
    The close correlation between cooling flows and emission-line nebulae in clusters of galaxies has been recognized for over a decade and a half, but the physical reason for this connection remains unclear. Here we present deep optical spectra of the nebula in Abell 2597, one of the nearest strong cooling-flow clusters. These spectra reveal the density, temperature, and metal abundances of the line-emitting gas. The abundances are roughly half-solar, and dust produces an extinction of at least a magnitude in V. The absence of [O III] 4363 emission rules out shocks as a major ionizing mechanism, and the weakness of He II 4686 rules out a hard ionizing source, such as an active galactic nucleus or cooling intracluster gas. Hot stars are therefore the best candidate for producing the ionization. However, even the hottest O stars cannot power a nebula as hot as the one we see. Some other nonionizing source of heat appears to contribute a comparable amount of power. We show that the energy flux from a confining medium can become important when the ionization level of a nebula drops to the low levels seen in cooling-flow nebulae. We suggest that this kind of phenomenon, in which energy fluxes from the surrounding medium augment photoelectric heating, might be the common feature underlying the diverse group of objects classified as LINERS.Comment: 33 Latex pages, including 16 Postscript figures, to appear in 1997 September 1 Astrophysical Journa

    Asymmetries in random motions of neutral Hydrogen gas in spiral galaxies

    Get PDF
    (Abridged). It has been recently shown that random motions of the neutral Hydrogen gas of the Triangulum galaxy (M33) exhibit a bisymmetric perturbation which is aligned with the minor axis of the galaxy, suggesting a projection effect. To investigate if perturbations in the velocity dispersion of nearby discs are comparable to those of M33, the sample is extended to 32 galaxies from The HI Nearby Galaxy Survey and the Westerbork HI Survey of Spiral and Irregular Galaxies. We study velocity asymmetries in the disc planes by performing Fourier transforms of high-resolution HI velocity dispersion maps corrected for beam smearing effects, and measure the amplitudes and phase angles of the Fourier harmonics. We find strong perturbations of first, second and fourth orders. The strongest asymmetry is the bisymmetry, which is predominantly associated with the presence of spiral arms. The first order asymmetry is generally oriented close to the disc major axis, and the second and fourth order asymmetries are preferentially oriented along intermediate directions between the major and minor axes of the discs. These results are evidence that strong projection effects shape the HI velocity dispersion maps. The most likely source of systematic orientations is the anisotropy of velocities, through the projection of streaming motions stronger along one of the planar directions in the discs. Moreover, systematic phase angles of asymmetries in the HI velocity dispersion could arise from tilted velocity ellipsoids. We expect a larger incidence of correlation between the radial and tangential velocities of HI gas. Our methodology is a powerful tool to constrain the dominant direction of streaming motions and thus the shape of the velocity ellipsoid of HI gas, which is de facto anisotropic at the angular scales probed by the observations.Comment: 40 pages, 33 figures. Accepted for publication in Astronomy & Astrophysics. Full resolution version available upon reques

    Spitzer Observations of Low Luminosity Isolated and Low Surface Brightness Galaxies

    Full text link
    We examine the infrared properties of five low surface brightness galaxies (LSBGs) and compare them with related but higher surface brightness galaxies, using Spitzer Space Telescope images and spectra. All the LSBGs are detected in the 3.6 and 4.5um bands, representing the stellar population. All but one are detected at 5.8 and 8.0um, revealing emission from hot dust and aromatic molecules, though many are faint or point-like at these wavelengths. Detections of LSBGs at the far-infrared wavelengths, 24, 70, and 160um, are varied in morphology and brightness, with only two detections at 160um, resulting in highly varied spectral energy distributions. Consistent with previous expectations for these galaxies, we find that detectable dust components exist for only some LSBGs, with the strength of dust emission dependent on the existence of bright star forming regions. However, the far-infrared emission may be relatively weak compared with normal star-forming galaxies.Comment: 20 pages, 8 figures, accepted to Ap

    Low, Milky-Way like, Molecular Gas Excitation of Massive Disk Galaxies at z~1.5

    Full text link
    We present evidence for Milky-Way-like, low-excitation molecular gas reservoirs in near-IR selected massive galaxies at z~1.5, based on IRAM Plateau de Bure Interferometer CO[3-2] and NRAO Very Large Array CO[1-0] line observations for two galaxies that had been previously detected in CO[2-1] emission. The CO[3-2] flux of BzK-21000 at z=1.522 is comparable within the errors to its CO[2-1] flux, implying that the CO[3-2] transition is significantly sub-thermally excited. The combined CO[1-0] observations of the two sources result in a detection at the 3 sigma level that is consistent with a higher CO[1-0] luminosity than that of CO[2-1]. Contrary to what is observed in submillimeter galaxies and QSOs, in which the CO transitions are thermally excited up to J>=3, these galaxies have low-excitation molecular gas, similar to that in the Milky Way and local spirals. This is the first time that such conditions have been observed at high redshift. A Large Velocity Gradient analysis suggests that molecular clouds with density and kinetic temperature comparable to local spirals can reproduce our observations. The similarity in the CO excitation properties suggests that a high, Milky-Way-like, CO to H_2 conversion factor could be appropriate for these systems. If such low-excitation properties are representative of ordinary galaxies at high redshift, centimeter telescopes such as the Expanded Very Large Array and the longest wavelength Atacama Large Millimeter Array bands will be the best tools for studying the molecular gas content in these systems through the observations of CO emission lines.Comment: 5 pages, 4 figures. ApJ Letters in pres

    On the Internal Absorption of Galaxy Clusters

    Full text link
    A study of the cores of galaxy clusters with the Einstein SSS indicated the presence of absorbing material corresponding to 1E+12 Msun of cold cluster gas, possibly resulting from cooling flows. Since this amount of cold gas is not confirmed by observations at other wavelengths, we examined whether this excess absorption is present in the ROSAT PSPC observations of 20 bright galaxy clusters. For 3/4 of the clusters, successful spectral fits were obtained with absorption due only to the Galaxy, and therefore no extra absorption is needed within the clusters, in disagreement with the results from the Einstein SSS data for some of the same clusters. For 1/4 of the clusters, none of our spectral fits was acceptable, suggesting a more complicated cluster medium than the two-temperature and cooling flow models considered here. However, even for these clusters, substantial excess absorption is not indicated.Comment: accepted by the Astrophysical Journa

    An Observationally Motivated Framework for AGN Heating of Cluster Cores

    Full text link
    The cooling-flow problem is a long-standing puzzle that has received considerable recent attention, in part because the mechanism that quenches cooling flows in galaxy clusters is likely to be the same mechanism that sharply truncates the high end of the galaxy luminosity function. Most of the recent models for halting cooling in clusters have focused on AGN heating, but the actual heating mechanism has remained mysterious. Here we present a framework for AGN heating derived from a Chandra survey of gas entropy profiles within cluster cores. This set of observations strongly suggests that the inner parts of cluster cores are shock-heated every ~10^8 years by intermittent AGN outbursts, driven by a kinetic power output of ~ 10^45 erg/sec and lasting at least 10^7 years. Beyond ~30 kpc these shocks decay to sound waves, releasing buoyant bubbles that heat the core's outer parts. Between heating episodes, cooling causes the core to relax toward an asymptotic pure-cooling profile. The density distribution in this asymptotic profile is sufficiently peaked that the AGN shock does not cause a core entropy inversion, allowing the cluster core to retain a strong iron abundance gradient, as observed.Comment: in press, Ap
    • …
    corecore