870 research outputs found

    The Carnegie Hubble Program: The Distance and Structure of the SMC as Revealed by Mid-infrared Observations of Cepheids

    Full text link
    Using Spitzer observations of classical Cepheids we have measured the true average distance modulus of the SMC to be 18.96±0.01stat±0.03sys18.96 \pm 0.01_{stat} \pm 0.03_{sys} mag (corresponding to 62±0.362 \pm 0.3 kpc), which is 0.48±0.010.48 \pm 0.01 mag more distant than the LMC. This is in agreement with previous results from Cepheid observations, as well as with measurements from other indicators such as RR Lyrae stars and the tip of the red giant branch. Utilizing the properties of the mid--infrared Leavitt Law we measured precise distances to individual Cepheids in the SMC, and have confirmed that the galaxy is tilted and elongated such that its eastern side is up to 20 kpc closer than its western side. This is in agreement with the results from red clump stars and dynamical simulations of the Magellanic Clouds and Stream.Comment: Accepted for publication in ApJ. 38 Pages, 11 figures. Figure 9 is interactive. Spitzer photometry for all Cepheids available as online tabl

    The Carnegie Hubble Program

    Get PDF
    We present an overview of and preliminary results from an ongoing comprehensive program that has a goal of determining the Hubble constant to a systematic accuracy of 2%. As part of this program, we are currently obtaining 3.6 micron data using the Infrared Array Camera (IRAC) on Spitzer, and the program is designed to include JWST in the future. We demonstrate that the mid-infrared period-luminosity relation for Cepheids at 3.6 microns is the most accurate means of measuring Cepheid distances to date. At 3.6 microns, it is possible to minimize the known remaining systematic uncertainties in the Cepheid extragalactic distance scale. We discuss the advantages of 3.6 micron observations in minimizing systematic effects in the Cepheid calibration of the Hubble constant including the absolute zero point, extinction corrections, and the effects of metallicity on the colors and magnitudes of Cepheids. We are undertaking three independent tests of the sensitivity of the mid-IR Cepheid Leavitt Law to metallicity, which when combined will allow a robust constraint on the effect. Finally, we are providing a new mid-IR Tully-Fisher relation for spiral galaxies

    The role of B cells in primary progressive multiple sclerosis

    Get PDF
    The success of ocrelizumab in reducing confirmed disability accumulation in primary progressive multiple sclerosis (PPMS) via CD20-targeted depletion implicates B cells as causal agents in the pathogenesis of PPMS. This review explores the possible mechanisms by which B cells contribute to disease progression in PPMS, specifically exploring cytokine production, antigen presentation, and antibody synthesis. B cells may contribute to disease progression in PPMS through cytokine production, specifically GM-CSF and IL-6, which can drive naïve T-cell differentiation into pro-inflammatory Th1/Th17 cells. B cell production of the cytokine LT-α may induce follicular dendritic cell production of CXCL13 and lead indirectly to T and B cell infiltration into the CNS. In contrast, production of IL-10 by B cells likely induces an anti-inflammatory effect that may play a role in reducing neuroinflammation in PPMS. Therefore, reduced production of IL-10 may contribute to disease worsening. B cells are also capable of potent antigen presentation and may induce pro-inflammatory T-cell differentiation via cognate interactions. B cells may also contribute to disease activity via antibody synthesis, although it\u27s unlikely the benefit of ocrelizumab in PPMS occurs via antibody decrement. Finally, various B cell subsets likely promulgate pro- or anti-inflammatory effects in MS

    Regular Incidence Complexes, Polytopes, and C-Groups

    Full text link
    Regular incidence complexes are combinatorial incidence structures generalizing regular convex polytopes, regular complex polytopes, various types of incidence geometries, and many other highly symmetric objects. The special case of abstract regular polytopes has been well-studied. The paper describes the combinatorial structure of a regular incidence complex in terms of a system of distinguished generating subgroups of its automorphism group or a flag-transitive subgroup. Then the groups admitting a flag-transitive action on an incidence complex are characterized as generalized string C-groups. Further, extensions of regular incidence complexes are studied, and certain incidence complexes particularly close to abstract polytopes, called abstract polytope complexes, are investigated.Comment: 24 pages; to appear in "Discrete Geometry and Symmetry", M. Conder, A. Deza, and A. Ivic Weiss (eds), Springe

    Calibration of the Mid-Infrared Tully-Fisher Relation

    Full text link
    Distance measures on a coherent scale around the sky are required to address the outstanding cosmological problems of the Hubble Constant and of departures from the mean cosmic flow. The correlation between galaxy luminosities and rotation rates can be used to determine distances to many thousands of galaxies in a wide range of environments potentially out to 200 Mpc. Mid-infrared (3.6 microns) photometry with the Spitzer Space Telescope is particularly valuable as the source of the luminosities because it provides products of uniform quality across the sky. From a perch above the atmosphere, essentially the total magnitude of targets can be registered in exposures of a few minutes. Extinction is minimal and the flux is dominated by the light from old stars which is expected to correlate with the mass of the targets. In spite of the superior photometry, the correlation between mid-infrared luminosities and rotation rates extracted from neutral hydrogen profiles is slightly degraded from the correlation found with I band luminosities. A color correction recovers a correlation that provides comparable accuracy to that available at I band (~20% 1sigma in an individual distance) while retaining the advantages identified above. Without the color correction the relation between linewidth and [3.6] magnitudes is M^{b,i,k,a}_{[3.6]} = -20.34 - 9.74 (log W_{mx}^{i} -2.5). This description is found with a sample of 213 galaxies in 13 clusters that define the slope and 26 galaxies with Cepheid or tip of the red giant branch distances that define the zero point. A color corrected parameter M_{C_{[3.6]}} is constructed that has reduced scatter: M_{C_{[3.6]}} = -20.34 - 9.13 (log W_{mx}^{i} -2.5). Consideration of the 7 calibration clusters beyond 50 Mpc, outside the domain of obvious peculiar velocities, provides a preliminary Hubble Constant estimate of H_0=74+/-5 km/s/Mpc.Comment: Accepted for publication in The Astrophysical Journal, 14 pages, 11 figures, 4 table
    corecore