346 research outputs found
Self-Consistent Mode-Coupling Approach to 1D Heat Transport
In the present Letter we present an analytical and numerical solution of the
self-consistent mode-coupling equations for the problem of heat conductivity in
one-dimensional systems. Such a solution leads us to propose a different
scenario to accomodate the known results obtained so far for this problem. More
precisely, we conjecture that the universality class is determined by the
leading order of the nonlinear interaction potential. Moreover, our analysis
allows us determining the memory kernel, whose expression puts on a more firm
basis the previously conjectured connection between anomalous heat conductivity
and anomalous diffusion.Comment: Submitted to Physical Review
Energy diffusion in hard-point systems
We investigate the diffusive properties of energy fluctuations in a
one-dimensional diatomic chain of hard-point particles interacting through a
square--well potential. The evolution of initially localized infinitesimal and
finite perturbations is numerically investigated for different density values.
All cases belong to the same universality class which can be also interpreted
as a Levy walk of the energy with scaling exponent 3/5. The zero-pressure limit
is nevertheless exceptional in that normal diffusion is found in tangent space
and yet anomalous diffusion with a different rate for perturbations of finite
amplitude. The different behaviour of the two classes of perturbations is
traced back to the "stable chaos" type of dynamics exhibited by this model.
Finally, the effect of an additional internal degree of freedom is
investigated, finding that it does not modify the overall scenarioComment: 16 pages, 15 figure
Anomalous kinetics and transport from 1D self--consistent mode--coupling theory
We study the dynamics of long-wavelength fluctuations in one-dimensional (1D)
many-particle systems as described by self-consistent mode-coupling theory. The
corresponding nonlinear integro-differential equations for the relevant
correlators are solved analytically and checked numerically. In particular, we
find that the memory functions exhibit a power-law decay accompanied by
relatively fast oscillations. Furthermore, the scaling behaviour and,
correspondingly, the universality class depends on the order of the leading
nonlinear term. In the cubic case, both viscosity and thermal conductivity
diverge in the thermodynamic limit. In the quartic case, a faster decay of the
memory functions leads to a finite viscosity, while thermal conductivity
exhibits an even faster divergence. Finally, our analysis puts on a more firm
basis the previously conjectured connection between anomalous heat conductivity
and anomalous diffusion
Nonequilibrium dynamics of a stochastic model of anomalous heat transport: numerical analysis
We study heat transport in a chain of harmonic oscillators with random
elastic collisions between nearest-neighbours. The equations of motion of the
covariance matrix are numerically solved for free and fixed boundary
conditions. In the thermodynamic limit, the shape of the temperature profile
and the value of the stationary heat flux depend on the choice of boundary
conditions. For free boundary conditions, they also depend on the coupling
strength with the heat baths. Moreover, we find a strong violation of local
equilibrium at the chain edges that determine two boundary layers of size
(where is the chain length), that are characterized by a
different scaling behaviour from the bulk. Finally, we investigate the
relaxation towards the stationary state, finding two long time scales: the
first corresponds to the relaxation of the hydrodynamic modes; the second is a
manifestation of the finiteness of the system.Comment: Submitted to Journal of Physics A, Mathematical and Theoretica
Simulation of heat transport in low-dimensional oscillator lattices
The study of heat transport in low-dimensional oscillator lattices presents a
formidable challenge. Theoretical efforts have been made trying to reveal the
underlying mechanism of diversified heat transport behaviors. In lack of a
unified rigorous treatment, approximate theories often may embody controversial
predictions. It is therefore of ultimate importance that one can rely on
numerical simulations in the investigation of heat transfer processes in
low-dimensional lattices. The simulation of heat transport using the
non-equilibrium heat bath method and the Green-Kubo method will be introduced.
It is found that one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) momentum-conserving nonlinear lattices display power-law
divergent, logarithmic divergent and constant thermal conductivities,
respectively. Next, a novel diffusion method is also introduced. The heat
diffusion theory connects the energy diffusion and heat conduction in a
straightforward manner. This enables one to use the diffusion method to
investigate the objective of heat transport. In addition, it contains
fundamental information about the heat transport process which cannot readily
be gathered otherwise.Comment: Article published in: Thermal transport in low dimensions: From
statistical physics to nanoscale heat transfer, S. Lepri, ed. Lecture Notes
in Physics, vol. 921, pp. 239 - 274, Springer-Verlag, Berlin, Heidelberg, New
York (2016
A simulation study of energy transport in the Hamiltonian XY-model
The transport properties of the planar rotator model on a square lattice are
analyzed by means of microcanonical and non--equilibrium simulations. Well
below the Kosterlitz--Thouless--Berezinskii transition temperature, both
approaches consistently indicate that the energy current autocorrelation
displays a long--time tail decaying as t^{-1}. This yields a thermal
conductivity coefficient which diverges logarithmically with the lattice size.
Conversely, conductivity is found to be finite in the high--temperature
disordered phase. Simulations close to the transition temperature are insted
limited by slow convergence that is presumably due to the slow kinetics of
vortex pairs.Comment: Submitted to Journal of Statistical Mechanics: theory and experimen
Nonequilibrium dynamics of a stochastic model of anomalous heat transport
We study the dynamics of covariances in a chain of harmonic oscillators with
conservative noise in contact with two stochastic Langevin heat baths. The
noise amounts to random collisions between nearest-neighbour oscillators that
exchange their momenta. In a recent paper, [S Lepri et al. J. Phys. A: Math.
Theor. 42 (2009) 025001], we have studied the stationary state of this system
with fixed boundary conditions, finding analytical exact expressions for the
temperature profile and the heat current in the thermodynamic (continuum)
limit. In this paper we extend the analysis to the evolution of the covariance
matrix and to generic boundary conditions. Our main purpose is to construct a
hydrodynamic description of the relaxation to the stationary state, starting
from the exact equations governing the evolution of the correlation matrix. We
identify and adiabatically eliminate the fast variables, arriving at a
continuity equation for the temperature profile T(y,t), complemented by an
ordinary equation that accounts for the evolution in the bulk. Altogether, we
find that the evolution of T(y,t) is the result of fractional diffusion.Comment: Submitted to Journal of Physics A, Mathematical and Theoretica
- …