360 research outputs found

    Streamer Wave Events Observed in Solar Cycle 23

    Full text link
    In this paper we conduct a data survey searching for well-defined streamer wave events observed by the Large Angle and Spectrometric Coronagraph (LASCO) on-board the Solar and Heliospheric Observatory (SOHO) throughout Solar Cycle 23. As a result, 8 candidate events are found and presented here. We compare different events and find that in most of them the driving CMEs ejecta are characterized by a high speed and a wide angular span, and the CME-streamer interactions occur generally along the flank of the streamer structure at an altitude no higher than the bottom of the field of view of LASCO C2. In addition, all front-side CMEs have accompanying flares. These common observational features shed light on the excitation conditions of streamer wave events. We also conduct a further analysis on one specific streamer wave event on 5 June 2003. The heliocentric distances of 4 wave troughs/crests at various exposure times are determined; they are then used to deduce the wave properties like period, wavelength, and phase speeds. It is found that both the period and wavelength increase gradually with the wave propagation along the streamer plasma sheet, and the phase speed of the preceding wave is generally faster than that of the trailing ones. The associated coronal seismological study yields the radial profiles of the Alfv\'en speed and magnetic field strength in the region surrounding the streamer plasma sheet. Both quantities show a general declining trend with time. This is interpreted as an observational manifestation of the recovering process of the CME-disturbed corona. It is also found that the Alfv\'enic critical point is at about 10 R_\odot where the flow speed, which equals the Alfv\'en speed, is \sim 200 km s1^{-1}

    The Sparsest Clusters With O Stars

    Full text link
    There is much debate on how high-mass star formation varies with environment, and whether the sparsest star-forming environments are capable of forming massive stars. To address this issue, we have observed eight apparently isolated OB stars in the SMC using HST's Advanced Camera for Surveys. Five of these objects appear as isolated stars, two of which are confirmed to be runaways. The remaining three objects are found to exist in sparse clusters, with <10 companion stars revealed, having masses of 1-4 solar mass. Stochastic effects dominate in these sparse clusters, so we perform Monte Carlo simulations to explore how our observations fit within the framework of empirical, galactic cluster properties. We generate clusters using a simplistic -2 power-law distribution for either the number of stars per cluster (N_*) or cluster mass (M_cl). These clusters are then populated with stars randomly chosen from a Kroupa IMF. We find that simulations with cluster lower-mass limits of M_cl,lo >20 solar mass and N_*,lo >40 match best with observations of SMC and Galactic OB star populations. We examine the mass ratio of the second-most massive and most massive stars (m_max,2/m_max), finding that our observations all exist below the 20th percentile of our simulated clusters. However, all of our observed clusters lie within the parameter space spanned by the simulated clusters, although some are in the lowest 5th percentile frequency. These results suggest that clusters are built stochastically by randomly sampling stars from a universal IMF with a fixed stellar upper-mass limit. In particular, we see no evidence to suggest a m_max - M_cl relation. Our results may be more consistent with core accretion models of star formation than with competitive accretion models, and they are inconsistent with the proposed steepening of the integrated galaxy IMF (IGIMF).Comment: 19 pages, 12 figures, accepted for publication in Ap

    Status of the CRESST Dark Matter Search

    Full text link
    The CRESST experiment aims for a detection of dark matter in the form of WIMPs. These particles are expected to scatter elastically off the nuclei of a target material, thereby depositing energy on the recoiling nucleus. CRESST uses scintillating CaWO4 crystals as such a target. The energy deposited by an interacting particle is primarily converted to phonons which are detected by transition edge sensors. In addition, a small fraction of the interaction energy is emitted from the crystals in the form of scintillation light which is measured in coincidence with the phonon signal by a separate cryogenic light detector for each target crystal. The ratio of light to phonon energy permits the discrimination between the nuclear recoils expected from WIMPs and events from radioactive backgrounds which primarily lead to electron recoils. CRESST has shown the success of this method in a commissioning run in 2007 and, since then, further investigated possibilities for an even better suppression of backgrounds. Here, we report on a new class of background events observed in the course of this work. The consequences of this observation are discussed and we present the current status of the experiment.Comment: Proceedings of the 13th International Workshop on Low Temperature Detectors, 4 pages, 3 figure

    A survey for near-infrared H2 emission in Herbig Ae/Be stars: emission from the outer disks of HD 97048 and HD 100546

    Get PDF
    We report on a sensitive search for H2 1-0 S(1), 1-0 S(0) and 2-1 S(1) ro-vibrational emission at 2.12, 2.22 and 2.25 micron in a sample of 15 Herbig Ae/Be stars employing CRIRES, the ESO-VLT near-infrared high-resolution spectrograph, at R~90,000. We detect the H2 1-0 S(1) line toward HD 100546 and HD 97048. In the other 13 targets, the line is not detected. The H2 1-0 S(0) and 2-1 S(1) lines are undetected in all sources. This is the first detection of near-IR H2 emission in HD 100546. The H2 1-0 S(1) lines observed in HD 100546 and HD 97048 are observed at a velocity consistent with the rest velocity of both stars, suggesting that they are produced in the circumstellar disk. In HD 97048, the emission is spatially resolved and it is observed to extend at least up to 200 AU. We report an increase of one order of magnitude in the H2 1-0 S(1) line flux with respect to previous measurements taken in 2003 for this star, which suggests line variability. In HD 100546 the emission is tentatively spatially resolved and may extend at least up to 50 AU. Modeling of the H2 1-0 S(1) line profiles and their spatial extent with flat keplerian disks shows that most of the emission is produced at a radius >5 AU. Upper limits to the H2 1-0 S(0)/ 1-0 S(1) and H2 2-1 S(1)/1-0 S(1) line ratios in HD 97048 are consistent with H2 gas at T>2000 K and suggest that the emission observed may be produced by X-ray excitation. The upper limits for the line ratios for HD 100546 are inconclusive. Because the H2 emission is located at large radii, for both sources a thermal emission scenario (i.e., gas heated by collisions with dust) is implausible. We argue that the observation of H2 emission at large radii may be indicative of an extended disk atmosphere at radii >5 AU. This may be explained by a hydrostatic disk in which gas and dust are thermally decoupled or by a disk wind caused by photoevaporation.Comment: Accepted by A&A. 16 pages, 7 figure

    Circumstellar disks and planets. Science cases for next-generation optical/infrared long-baseline interferometers

    Full text link
    We present a review of the interplay between the evolution of circumstellar disks and the formation of planets, both from the perspective of theoretical models and dedicated observations. Based on this, we identify and discuss fundamental questions concerning the formation and evolution of circumstellar disks and planets which can be addressed in the near future with optical and infrared long-baseline interferometers. Furthermore, the importance of complementary observations with long-baseline (sub)millimeter interferometers and high-sensitivity infrared observatories is outlined.Comment: 83 pages; Accepted for publication in "Astronomy and Astrophysics Review"; The final publication is available at http://www.springerlink.co
    corecore