1,573 research outputs found
Evaluation of the therapeutic potential of ant-TLR4-antibody MTS510 in experimental stroke and significa of different routes of application
Toll-like receptors (TLRs) are central sensors for the inflammatory response in ischemia-reperfusion injury. We therefore investigated whether TLR4 inhibition could be used to treat stroke in a standard model of focal cerebral ischemia. Anti-TLR4/MD2-antibody (mAb clone MTS510) blocked TLR4-induced cell activation in vitro, as reported previously. Here, different routes of MTS510 application in vivo were used to study the effects on stroke outcome up to 2d after occlusion of the middle cerebral artery (MCAO) for 45 min in adult male C57Bl/6 wild-type mice. Improved neurological performance, reduced infarct volumes, and reduced brain swelling showed that intravascular application of MTS510 had a protective effect in the model of 45 min MCAO. Evaluation of potential long-term adverse effects of anti-TLR4-mAb-treament revealed no significant deleterious effect on infarct volumes nor neurological deficit after 14d of reperfusion in a mild model of stroke (15 min MCAO). Interestingly, inhibition of TLR4 resulted in an altered adaptive immune response at 48 hours after reperfusion. We conclude that blocking TLR4 by the use of specific mAb is a promising strategy for stroke therapy. However, long-term studies with increased functional sensitivity, larger sampling sizes and use of other species are required before a clinical use could be envisaged
Genesis and Gappa: processing, analyzing and visualizing phylogenetic (placement) data
We present genesis, a library for working with phylogenetic data, and gappa, an accompanying command-line tool for conducting typical analyses on such data. The tools target phylogenetic trees and phylogenetic placements, sequences, taxonomies and other relevant data types, offer high-level simplicity as well as lowlevel customizability, and are computationally efficient, well-tested and field-proven
Leadership, Communication and Religiosity in Higher Education Administration: Distinctions That Make a Difference
This project investigated the communicative and religious components of transformational leadership and job satisfaction in the context of higher education. Specifically, 224 CAO members of the Council of Independent Colleges completed a survey assessing their own leadership style, communication behavior, and religiosity. A stepwise multiple regression procedure revealed seven significant predictors of transformational leadership. The most important variables included attentiveness, openness, role negotiation, and intrinsic religious orientation. Additionally, a t-test compared a subset of CAOs from institutions affiliated with the Council of Christian Colleges and Universities with CAOs in non-affiliated institutions. Results revealed statistically significant differences in attentiveness, information support, exercise of transformational leadership, and religious identity, practice, and orientation. Lastly, a second stepwise regression procedure revealed five significant predictors of CAO job satisfaction including availability of emotional support, level of commitment to the job, and amount of religious activity. The paper concludes with a discussion of implications for conducting higher education administration in ways that best reflect religious ideals
SCRAPP: A tool to assess the diversity of microbial samples from phylogenetic placements
Microbial ecology research is currently driven by the continuously decreasing cost of DNA sequencing and the improving accuracy of data analysis methods. One such analysis method is phylogenetic placement, which establishes the phylogenetic identity of the anonymous environmental sequences in a sample by means of a given phylogenetic reference tree. However, assessing the diversity of a sample remains challenging, as traditional methods do not scale well with the increasing data volumes and/or do not leverage the phylogenetic placement information. Here, we present scrapp, a highly parallel and scalable tool that uses a molecular species delimitation algorithm to quantify the diversity distribution over the reference phylogeny for a given phylogenetic placement of the sample. scrapp employs a novel approach to cluster phylogenetic placements, called placement space clustering, to efficiently perform dimensionality reduction, so as to scale on large data volumes. Furthermore, it uses the phylogeny‐aware molecular species delimitation method mPTP to quantify diversity. We evaluated scrapp using both, simulated and empirical data sets. We use simulated data to verify our approach. Tests on an empirical data set show that scrapp‐derived metrics can classify samples by their diversity‐correlated features equally well or better than existing, commonly used approaches. scrapp is available at https://github.com/pbdas/scrapp
Scalable methods for analyzing and visualizing phylogenetic placement of metagenomic samples
Background: The exponential decrease in molecular sequencing cost generates unprecedented amounts of data. Hence, scalable methods to analyze these data are required. Phylogenetic (or Evolutionary) Placement methods identify the evolutionary provenance of anonymous sequences with respect to a given reference phylogeny. This increasingly popular method is deployed for scrutinizing metagenomic samples from environments such as water, soil, or the human gut.
Novel methods: Here, we present novel and, more importantly, highly scalable methods for analyzing phylogenetic placements of metagenomic samples. More specifically, we introduce methods for (a) visualizing differences between samples and their correlation with associated meta-data on the reference phylogeny, (b) clustering similar samples using a variant of the k-means method, and (c) finding phylogenetic factors using an adaptation of the Phylofactorization method. These methods enable to interpret metagenomic data in a phylogenetic context, to find patterns in the data, and to identify branches of the phylogeny that are driving these patterns.
Results: To demonstrate the scalability and utility of our methods, as well as to provide exemplary interpretations of our methods, we applied them to 3 publicly available datasets comprising 9782 samples with a total of approximately 168 million sequences. The results indicate that new biological insights can be attained via our methods
Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor gamma expression and adipogenesis in cultured 3T3-L1 cells
Based on recent evidence that fatty acid synthase and endogenously produced fatty acid derivatives are required for adipogenesis in 3T3-L1 adipocytes, we conducted a small interfering RNA-based screen to identify other fatty acid-metabolizing enzymes that may mediate this effect. Of 24 enzymes screened, stearoyl-CoA desaturase 2 (SCD2) was found to be uniquely and absolutely required for adipogenesis. Remarkably, SCD2 also controls the maintenance of adipocyte-specific gene expression in fully differentiated 3T3-L1 adipocytes, including the expression of SCD1. Despite the high sequence similarity between SCD2 and SCD1, silencing of SCD1 did not down-regulate 3T3-L1 cell differentiation or gene expression. SCD2 mRNA expression was also uniquely elevated 44-fold in adipose tissue upon feeding mice a high fat diet, whereas SCD1 showed little response. The inhibition of adipogenesis caused by SCD2 depletion was associated with a decrease in peroxisome proliferator-activated receptor gamma (PPARgamma) mRNA and protein, whereas in mature adipocytes loss of SCD2 diminished PPARgamma protein levels, with little change in mRNA levels. In the latter case, SCD2 depletion did not change the degradation rate of PPARgamma protein but decreased the metabolic labeling of PPARgamma protein using [(35)S]methionine/cysteine, indicating protein translation was decreased. This requirement of SCD2 for optimal protein synthesis in fully differentiated adipocytes was verified by polysome profile analysis, where a shift in the mRNA to monosomes was apparent in response to SCD2 silencing. These results reveal that SCD2 is required for the induction and maintenance of PPARgamma protein levels and adipogenesis in 3T3-L1 cells
Communication, Leadership, and Job Satisfaction: Perspectives on Supervisor-Subordinate Relationships
In an era when leadership is much studied and little understood (Tourish & Barge, 2010), and when job satisfaction has reached an all-time low (Gibbons, 2010), investigating factors that contribute to job and relationship satisfaction, as well as more effective leadership, becomes a critical task. This project asked 154 people employed fulltime to evaluate their work supervisor in terms of specific communication behaviors, perceived leader effectiveness, and their own levels of relational and job satisfaction. Gibb’s (1961) theory of supportive and defensive communication provided the conceptual lens used to explicate the impact of communication behaviors on specific personal and organizational outcomes. Statistical analysis highlighted the discursive nature of workplace interaction by uncovering strong, predictive relationships between the positive behaviors of spontaneity and empathy and worker perceptions of supervisor effectiveness, relational satisfaction, and employee job satisfaction. Likewise, perceptions of supervisor leadership style are instantiated in these same communication behaviors suggesting that leadership is indeed a communication phenomenon. Last, t-tests revealed that supervisors rated higher in effectiveness and higher in relational satisfaction utilized all six of Gibb’s supportive communication behaviors more, and all six defensive behaviors less, than their more negatively evaluated peers
Recommended from our members
In situ measurements of HCN and CH3CN over the Pacific Ocean: Sources, sinks, and budgets
We report the first in situ measurements of hydrogen cyanide (HCN) and methyl cyanide (CH3CN, acetonitrile) from the Pacific troposphere (0-12 km) obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission (February-April 2001). Mean HCN and CH3CN mixing ratios of 243 ± 118 (median 218) ppt and 149 ± 56 (median 138) ppt, respectively, were measured. These in situ observations correspond to a mean tropospheric HCN column of 4.2 × 1015 molecules cm-2 and a CH3CN column of 2.5 × 1015 molecules cm-2. This is in good agreement with the 0-12 km HCN column of 4.4 (±0.6) × 1015 molecules cm-2 derived from infrared solar spectroscopic observations over Japan. Mixing ratios of HCN and CH3CN were greatly enhanced in pollution outflow from Asia and were well correlated with each other as well as with known tracers of biomass combustion (e.g., CH3Cl, CO). Volumetric enhancement (or emission) ratios (ERs) relative to CO in free tropospheric plumes, likely originating from fires, were 0.34% for HCN and 0.17% for CH3CN. ERs with respect to CH3Cl and CO in selected biomass burning (BB) plumes in the free troposphere and in boundary layer pollution episodes are used to estimate a global BB source of 0.8 ± 0.4 Tg (N) yr-1 for HCN and 0.4 ± 0.1 Tg (N) yr-1 for CH3CN. In comparison, emissions from industry and fossil fuel combustion are quite small (<0.05 Tg (N) yr-1). The vertical structure of HCN and CH3CN indicated reduced mixing ratios in the marine boundary layer (MBL). Using a simple box model, the observed gradients across the top of the MBL are used to derive an oceanic loss rate of 8.8 × 10-15 g (N) cm-2 s-1 for HCN and 3.4 × 10-15 g (N) cm-2 s-1 for CH3CN. An air-sea exchange model is used to conclude that this flux can be maintained if the oceans are undersaturated in HCN and CH3CN by 27% and 6%, respectively. These observations also correspond to an open ocean mean deposition velocity (vd) of 0.12 cm s-1 for HCN and 0.06 cm s-1 for CH3CN. It is inferred that oceanic loss is a dominant sink for these cyanides and that they deposit some 1.4 Tg (N) of nitrogen annually to the oceans. Assuming loss to the oceans and reaction with OH radicals as the major removal processes, a mean atmospheric residence time of 5.0 months for HCN and 6.6 months for CH3CN is calculated. A global budget analysis shows that the sources and sinks of HCN and CH3CN are roughly in balance but large uncertainties remain in part due to a lack of observational data from the atmosphere and the oceans. Pathways leading to the oceanic (and soil) degradation of these cyanides are poorly known but are expected to be biological in nature
- …