5,292 research outputs found

    Optimal control of light propagation through multiple-scattering media in the presence of noise

    Full text link
    We study the control of coherent light propagation through multiple-scattering media in the presence of measurement noise. In our experiments, we use a two-step optimization procedure to find the optimal incident wavefront. We conclude that the degree of optimal control of coherent light propagation through a multiple-scattering medium is only determined by the number of photoelectrons detected per single speckle spot. The prediction of our model agrees well with the experimental results. Our results offer opportunities for imaging applications through scattering media such as biological tissue in the shot noise limit

    Light propagation and emission in complex photonic media

    Get PDF
    We provide an introduction to complex photonic media, that is, composite materials with spatial inhomogeneities that are distributed over length scales comparable to or smaller than the wavelength of light. This blossoming field is firmly rooted in condensed matter physics, in optics, and in materials science. Many stimulating analogies exist with other wave phenomena such as sound and seismology, X-rays, neutrons. The field has a rich history, which has led to many applications in lighting, novel lasers, light harvesting, microscopy, and bio optics. We provide a brief overview of complex photonic media with different classes of spatial order, varying from completely random to long-periodically ordered structures, quasi crystalline and aperiodic structures, and arrays of cavities. In addition to shaping optical waves by suitable photonic nanostructures, the realization is quickly arising that the spatial shaping of optical wavefronts with spatial light modulators dramatically increases the number of control parameters. As a result, it is becoming possible for instance to literally see through completely opaque complex media. We discuss a unified view of complex photonic media by means of a photonic interaction strength parameter. This parameter gauges the interaction of light with any complex photonic medium, and allows to compare complex media from different classes for similar applications.Comment: 8 pages, 2 figures, Light Localisation and Lasing: Random and Quasi-Random Photonic Structures, Eds. M. Ghulinyan and L. Pavesi, (Cambridge Univ. Press, Cambridge, 2015) Ch. 1, p.

    Design of a 3D photonic band gap cavity in a diamond-like inverse woodpile photonic crystal

    Get PDF
    We theoretically investigate the design of cavities in a three-dimensional (3D) inverse woodpile photonic crystal. This class of cubic diamond-like crystals has a very broad photonic band gap and consists of two perpendicular arrays of pores with a rectangular structure. The point defect that acts as a cavity is centred on the intersection of two intersecting perpendicular pores with a radius that differs from the ones in the bulk of the crystal. We have performed supercell bandstructure calculations with up to 5×5×55 \times 5 \times 5 unit cells. We find that up to five isolated and dispersionless bands appear within the 3D photonic band gap. For each isolated band, the electric-field energy is localized in a volume centred on the point defect, hence the point defect acts as a 3D photonic band gap cavity. The mode volume of the cavities resonances is as small as 0.8 λ3\lambda^{3} (resonance wavelength cubed), indicating a strong confinement of the light. By varying the radius of the defect pores we found that only donor-like resonances appear for smaller defect radius, whereas no acceptor-like resonances appear for greater defect radius. From a 3D plot of the distribution of the electric-field energy density we conclude that peaks of energy found in sharp edges situated at the point defect, similar to how electrons collect at such features. This is different from what is observed for cavities in non-inverted woodpile structures. Since inverse woodpile crystals can be fabricated from silicon by CMOS-compatible means, we project that single cavities and even cavity arrays can be realized, for wavelength ranges compatible with telecommunication windows in the near infrared.Comment: 11 figure

    Local density of optical states in the band gap of a finite photonic crystal

    Get PDF
    We study the local density of states (LDOS) in a finite photonic crystal, in particular in the frequency range of the band gap. We propose a new point of view on the band gap, which we consider to be the result of vacuum fluctuations in free space that tunnel in the forbidden range in the crystal. As a result, we arrive at a model for the LDOS that is in two major items modified compared to the well-known expression for infinite crystals. Firstly, we modify the Dirac delta functions to become Lorentzians with a width set by the crystal size. Secondly, building on characterization of the fields versus frequency and position we calculated the fields in the band gap. We start from the fields at the band edges, interpolated in space and position, and incorporating the exponential damping in the band gap. We compare our proposed model to exact calculations in one dimension using the transfer matrix method and find very good agreement. Notably, we find that in finite crystals, the LDOS depends on frequency, on position, and on crystal size, in stark contrast to the well-known results for infinite crystals.Comment: 22 pages, 8 figure

    Intrinsic fluctuations in random lasers

    Get PDF
    We present a quantitative experimental and theoretical study of shot-to-shot intensity fluctuations in the emitted light of a random laser. A model that clarifies these intrinsic fluctuations is developed. We describe the output versus input power graphs of the random laser with an effective spontaneous emission factor (beta factor).Comment: accepted by Phys. Rev. A. submitted; 7 pages, 5 figure

    Star formation in the central regions of galaxies

    Get PDF
    Massive star formation in the central regions of spiral galaxies plays an important role in the dynamical and secular evolution of their hosts. Here, we summarise a number of recent investigations of the star formation history and the physical conditions of the gas in circumnuclear regions, to illustrate not only the detailed results one can achieve, but also the potential of using state-of-the-art spectroscopic and analysis techniques in researching the central regions of galaxies in general. We review how the star formation history of nuclear rings confirms that they are long-lived and stable configurations. Gas flows in from the disk, through the bar, and into the ring, where successive episodes of massive star formation occur. Analysing the ring in NGC 7742 in particular, we determine the physical conditions of the line emitting gas using a combination of ionisation and stellar population modelling, concluding that the origin of the nuclear ring in this non-barred galaxy lies in a recent minor merger with a small gas-rich galaxy.Comment: Invited contribution, to appear in "Mapping the Galaxy and other galaxies", Eds. K. Wada and F. Combes, Springer, in pres

    The contribution of small farms and commercial large farms to the food security of Trinidad and Tobago

    Get PDF
    The purpose of this study is to investigate and analyze Trinidad and Tobago’s recent agricultural policy decisions and their effect on the way small farms and commercial large farms coexist to contribute to the country\u27s food security. Food security is defined as when all persons can access sufficient and nutritious food to maintain a healthy and active life, and have enough income to access that food in a safe, socially acceptable way. This research uses qualitative data from farmers, representatives of agricultural organizations, and consumers/vendors at open air markets in Tobago, and secondary data from local government offices and international organizations. Information also comes from the country’s three main daily newspapers. The research suggests that the State has been striving to integrate the commercial farms into domestic, regional and international markets by emphasizing the role of technology and aggressive marketing. The research also suggests that the State is striving to improve the circumstances of small farmers through education, training and technology with regard to farming methods based on best practices; higher output quality standards; inclusion into the commodity value chain process; marketing support; and increased access to credit and financial incentives. The link between increased output at the commercial farms and lower domestic food prices has not been fully explored in this research, but initial reactions from farmers suggest that small farm incomes have been negatively affected

    Observation of Intensity Statistics of Light Transmitted Through 3D Random Media

    Get PDF
    We experimentally observe the spatial intensity statistics of light transmitted through three-dimensional isotropic scattering media. The intensity distributions measured through layers consisting of zinc oxide nanoparticles differ significantly from the usual Rayleigh statistics associated with speckle, and instead are in agreement with the predictions of mesoscopic transport theory, taking into account the known material parameters of the samples. Consistent with the measured spatial intensity fluctuations, the total transmission fluctuates. The magnitude of the fluctuations in the total transmission is smaller than expected on the basis of quasi-one-dimensional (1D) transport theory, which indicates that quasi-1D theories cannot fully describe these open three-dimensional media.Comment: 4 pages 3 figure
    • …
    corecore