2,900 research outputs found
A Frequency-Controlled Magnetic Vortex Memory
Using the ultra low damping NiMnSb half-Heusler alloy patterned into
vortex-state magnetic nano-dots, we demonstrate a new concept of non-volatile
memory controlled by the frequency. A perpendicular bias magnetic field is used
to split the frequency of the vortex core gyrotropic rotation into two distinct
frequencies, depending on the sign of the vortex core polarity inside
the dot. A magnetic resonance force microscope and microwave pulses applied at
one of these two resonant frequencies allow for local and deterministic
addressing of binary information (core polarity)
Direct current control of three magnon scattering processes in spin-valve nanocontacts
We have investigated the generation of spin waves in the free layer of an
extended spin-valve structure with a nano-scaled point contact driven by both
microwave and direct electric current using Brillouin light scattering
microscopy. Simultaneously with the directly excited spin waves, strong
nonlinear effects are observed, namely the generation of eigenmodes with
integer multiple frequencies (2 \emph{f}, 3 \emph{f}, 4 \emph{f}) and modes
with non-integer factors (0.5 \emph{f}, 1.5 \emph{f}) with respect to the
excitation frequency \emph{f}. The origin of these nonlinear modes is traced
back to three magnon scattering processes. The direct current influence on the
generation of the fundamental mode at frequency \emph{f} can be related to the
spin-transfer torque, while the efficiency of three-magnon-scattering processes
is controlled by the Oersted field as an additional effect of the direct
current
Bistability of vortex core dynamics in a single perpendicularly magnetized nano-disk
Microwave spectroscopy of individual vortex-state magnetic nano-disks in a
perpendicular bias magnetic field, , is performed using a magnetic resonance
force microscope (MRFM). It reveals the splitting induced by on the
gyrotropic frequency of the vortex core rotation related to the existence of
the two stable polarities of the core. This splitting enables spectroscopic
detection of the core polarity. The bistability extends up to a large negative
(antiparallel to the core) value of the bias magnetic field , at which the
core polarity is reversed. The difference between the frequencies of the two
stable rotational modes corresponding to each core polarity is proportional to
and to the ratio of the disk thickness to its radius. Simple analytic
theory in combination with micromagnetic simulations give quantitative
description of the observed bistable dynamics.Comment: 4 pages, 3 figures, 1 table, 16 references. Submitted to Physical
Review Letters on December 19th, 200
The Effects of Neutral Inertia on Ionospheric Currents in the High-Latitude Thermosphere Following a Geomagnetic Storm
Results of an experimental and theoretical investigation into the effects of the time dependent neutral wind flywheel on high-latitude ionospheric electrodynamics are presented. The results extend our previous work which used the National Center for Atmospheric Research Thermosphere/Ionosphere General Circulation Model (NCAR TIGCM) to theoretically simulate flywheel effects in the aftermath of a geomagnetic storm. The previous results indicated that the neutral circulation, set up by ion-neutral momentum coupling in the main phase of a geomagnetic storm, is maintained for several hours after the main phase has ended and may dominate height-integrated Hall currents and field-aligned currents for up to 4-5 hours. We extend the work of Deng et al. to include comparisons between the calculated time-dependent ionospheric Hall current system in the storm-time recovery period and that measured by instruments on board the Dynamics Explorer 2 (DE 2) satellite. Also, comparisons are made between calculated field-aligned currents and those derived from DE 2 magnetometer measurements. These calculations also allow us to calculate the power transfer rate (sometimes called the Poynting flux) between the magnetosphere and ionosphere. The following conclusions have been drawn: (1) Neutral winds can contribute significantly to the horizontal ionospheric current system in the period immediately following the main phase of a geomagnetic storm, especially over the magnetic polar cap and in regions of ion drift shear. (2) Neutral winds drive Hall currents that flow in the opposite direction to those driven by ion drifts. (3) The overall morphology of the calculated field-aligned current system agrees with previously published observations for the interplanetary magnetic field (IMF) B(sub Z) southward conditions, although the region I and region 2 currents are smeared by the TI(ICM model grid resolution. (4) Neutral winds can make significant contributions to the field-aligned current system when B(sub Z) northward conditions prevail following the main phase of a storm, but can account for only a fraction of the observed currents. (5) DE 2 measurements provide a demonstration of "local" (satellite-altitude) flywheel effects. (6) On the assumption that the magnetosphere acts as an insulator, we calculate neutral-wind-induced polarization electric fields of approx. 20-30 kV in the period immediately following the geomagnetic storm
Mercury Orbiter: Report of the Science Working Team
The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems
Cassini in situ observations of long duration magnetic reconnection in Saturn’s magnetotail
Magnetic reconnection is a fundamental process in solar system and astrophysical plasmas, through which stored magnetic energy associated with current sheets is converted into thermal, kinetic and wave energy1, 2, 3, 4. Magnetic reconnection is also thought to be a key process involved in shedding internally produced plasma from the giant magnetospheres at Jupiter and Saturn through topological reconfiguration of the magnetic field5, 6. The region where magnetic fields reconnect is known as the diffusion region and in this letter we report on the first encounter of the Cassini spacecraft with a diffusion region in Saturn’s magnetotail. The data also show evidence of magnetic reconnection over a period of 19?h revealing that reconnection can, in fact, act for prolonged intervals in a rapidly rotating magnetosphere. We show that reconnection can be a significant pathway for internal plasma loss at Saturn6. This counters the view of reconnection as a transient method of internal plasma loss at Saturn5, 7. These results, although directly relating to the magnetosphere of Saturn, have applications in the understanding of other rapidly rotating magnetospheres, including that of Jupiter and other astrophysical bodies
- …