260 research outputs found

    Microscopic origin of Magnetic Ferroelectrics in Nonlinear Multiferroics

    Get PDF
    A simple but general microscopic mechanism to understand the interplay between the electric and magnetic degrees of freedom is developed. Within this mechanism, the magnetic structure generates an electric current which induce an counterbalance electric current from the spin orbital coupling. When the magnetic structure is described by a single order parameter, the electric polarization is determined by the single spin orbital coupling parameter, and the material is predicted to be a half insulator. This mechanism provides a simple estimation of the value of ferroelectricity and sets a physical limitation as well.Comment: 4 pages, 1 figur

    Epitaxial checkerboard arrangement of nanorods in ZnMnGaO4 films studied by x-ray diffraction

    Full text link
    The intriguing nano-structural properties of a ZnMnGaO4 film epitaxially grown on MgO (001) substrate have been investigated using synchrotron radiation-based x-ray diffraction. The ZnMnGaO4 film consisted of a self-assembled checkerboard (CB) structure with perfectly aligned and regularly spaced vertical nanorods. The lattice parameters of the orthorhombic and rotated tetragonal phases of the CB structure were analyzed using H-K, H-L, and K-L cross sections of the reciprocal space maps measured around various symmetric and asymmetric reflections of the spinel structure. We demonstrate that the symmetry of atomic displacements at the phases boundaries provides the means for coherent coexistence of two domains types within the volume of the film

    Electron cyclotron mass in undoped CdTe/CdMnTe quantum wells

    Full text link
    Optically detected cyclotron resonance of two-dimensional electrons has been studied in nominally undoped CdTe/(Cd,Mn)Te quantum wells. The enhancement of carrier quantum confinement results in an increase of the electron cyclotron mass from 0.099m0m_0 to 0.112m0m_0 with well width decreasing from 30 down to 3.6 nm. Model calculations of the electron effective mass have been performed for this material system and good agreement with experimental data is achieved for an electron-phonon coupling constant α\alpha =0.32

    Bifurcations observed in the spectra of coupled electron-phonon modes in multiferroic PrFe3(BO3)4PrFe_3(BO_3)_4 subjected to a magnetic field

    Get PDF
    We report on bifurcations effect mediated by the electron-phonon coupling in a concentrated rare-earth-containing antiferromagnet, observed in the spectra of coupled 4f4f-electron-phonon modes under the influence of an external magnetic field. The effect was observed in the low-temperature far-infrared (terahertz) reflection spectra of a multiferroic easy-axis antiferromagnet PrFe3(BO3)4PrFe_3(BO_3)_4 in magnetic fields Bext∣∣c\textbf{B}_{ext}||c. Both paramagnetic and magnetically ordered phases (including a spin-flop one) were studied in magnetic fields up to 30 T. We show that the field behavior of the coupled modes can be successfully explained and modeled on the base of the equation derived in the frame of the theory of coupled electron-phonon modes, with the same field-independent electron-phonon interaction constant ∣W∣=14.8cm−1|W| = 14.8 cm^{-1}.Comment: 5 pages, 4 figure

    Coupling between magnon and ligand-field excitations in magnetoelectric Tb3Fe5O12 garnet

    Full text link
    The spectra of far-infrared transmission in Tb3Fe5O12 magnetoelectric single crystals have been studied in the range between 15 and 100 cm-1, in magnetic fields up to 10 T, and for temperatures between 5 and 150 K. We attribute some of the observed infrared-active excitations to electric-dipole transitions between ligand-field split states of Tb3+ ions. Anticrossing between the magnetic exchange excitation and the ligand-field transition occurs at the temperature between 60 and 80 K. The corresponding coupling energy for this interaction is 6 cm-1. Temperature-induced softening of the hybrid IR excitation correlates with the increase of the static dielectric constant. We discuss the possibility for hybrid excitations of magnons and ligand-field states and their possible connection to the magnetoelectric effect in Tb3Fe5O12.Comment: submitted to Phys. Rev. B on May 15th, 201

    Stabilizing effect of nuclear quadrupole interaction on the polarization of electron-nuclear spin system in a quantum dot

    Full text link
    Nuclear quadrupole interaction extends the limits imposed by hyperfine interaction on the spin coherence of the electron and nuclei in a quantum dot. The strain-induced nuclear quadrupole interaction suppresses the nuclear spin flip and makes possible the zero-field dynamic nuclear polarization in self-organized InP/InGaP quantum dots. The direction of the effective nuclear magnetic field is fixed in space, thus quenching the magnetic depolarization of the electron spin in the quantum dot. The quadrupole interaction suppresses the zero-field electron spin decoherence also for the case of non-polarized nuclei. These results provide a new vision of the role of the nuclear quadrupole interaction in nanostructures: it elongates the spin memory of the electron-nuclear system.Comment: 18 pages including 3 figures. Shortened version has been accepted for publication in Physical Review Letter

    Coulomb Drag Between Parallel Ballistic Quantum Wires

    Full text link
    The Coulomb drag between parallel, {\it ballistic} quantum wires is studied theoretically in the presence of a perpendicular magnetic field B. The transresistance R_D shows peaks as a function of the Fermi level and splitting energy between the 1D subbands of the wires. The sharpest peaks appear when the Fermi level crosses the subband extrema so that the Fermi momenta are small. Two other kinds of peaks appear when either {\it intra}- or {\it inter}-subband transitions of electrons have maximum probability; the {\it intra}-subband transitions correspond to a small splitting energy. R_D depends on the field B in a nonmonotonic fashion: it decreases with B, as a result of the suppression of backscattering, and increases sharply when the Fermi level approaches the subband bottoms and the suppression is outbalanced by the increase of the Coulomb matrix elements and of the density of states.Comment: Text 14 pages in Latex/Revtex format, 4 Postscript figures. Phys. Rev. B,in pres
    • …
    corecore