1,881,350 research outputs found
Cooper Pairs with Broken Parity and Time-Reversal Symmetries in D-wave Superconductors
Paramagnetic effects are shown to result in the appearance of a triplet
component of order parameter in a vortex phase of a d-wave superconductor in
the absence of impurities. This component, which breaks both parity and
time-reversal symmetries of Cooper pairs, is expected to be of the order of
unity in a number of modern superconductors such as organic, high-Tc, and some
others. A generic phase diagram of such type-IV superconductors, which are
singlet ones at H=0 and characterized by singlet-triplet mixed Copper pairs
with broken time-reversal symmetry in a vortex phase, is discussed.Comment: 10 pages, 1 figures, Phys. Rev. Lett., submitted (July 25 2005
Why magnesium diboride is not described by anisotropic Ginzburg-Landau theory
It is well established that the superconductivity in the recently discovered
superconducting compound MgB resides in the quasi-two-dimensional band
(-band) and three-dimensional band (-band). We demonstrate that,
due to such band structure, the anisotropic Ginzburg-Landau theory practically
does not have region of applicability, because gradient expansion in the
direction breaks down. In the case of dirty -band we derive the simplest
equations which describe properties of such superconductors near and
explore some consequences of these equations.Comment: 4 pages, 2 fugures, Subm. Phys. Rev. Let
Relic gravitational waves in the light of 7-year Wilkinson Microwave Anisotropy Probe data and improved prospects for the Planck mission
The new release of data from Wilkinson Microwave Anisotropy Probe improves
the observational status of relic gravitational waves. The 7-year results
enhance the indications of relic gravitational waves in the existing data and
change to the better the prospects of confident detection of relic
gravitational waves by the currently operating Planck satellite. We apply to
WMAP7 data the same methods of analysis that we used earlier [W. Zhao, D.
Baskaran, and L.P. Grishchuk, Phys. Rev. D 80, 083005 (2009)] with WMAP5 data.
We also revised by the same methods our previous analysis of WMAP3 data. It
follows from the examination of consecutive WMAP data releases that the maximum
likelihood value of the quadrupole ratio , which characterizes the amount of
relic gravitational waves, increases up to , and the interval
separating this value from the point (the hypothesis of no gravitational
waves) increases up to a level. The primordial spectra of density
perturbations and gravitational waves remain blue in the relevant interval of
wavelengths, but the spectral indices increase up to and
. Assuming that the maximum likelihood estimates of the perturbation
parameters that we found from WMAP7 data are the true values of the parameters,
we find that the signal-to-noise ratio for the detection of relic
gravitational waves by the Planck experiment increases up to , even
under pessimistic assumptions with regard to residual foreground contamination
and instrumental noises. We comment on theoretical frameworks that, in the case
of success, will be accepted or decisively rejected by the Planck observations.Comment: 27 pages, 12 (colour) figures. Published in Phys. Rev. D. V.3:
modifications made to reflect the published versio
On the contribution of density perturbations and gravitational waves to the lower order multipoles of the Cosmic Microwave Background Radiation
The important studies of Peebles, and Bond and Efstathiou have led to the
formula C_l = const/[l(l +1)] aimed at describing the lower order multipoles of
the CMBR temperature variations caused by density perturbations with the flat
spectrum. Clearly, this formula requires amendments, as it predicts an
infinitely large monopole C_0, and a dipole moment C_1 only 6/2 times larger
than the quadrupole C_2, both predictions in conflict with observations. We
restore the terms omitted in the course of the derivation of this formula, and
arrive at a new expression. According to the corrected formula, the monopole
moment is finite and small, while the dipole moment is sensitive to
short-wavelength perturbations, and numerically much larger than the
quadrupole, as one would expect on physical grounds. At the same time, the
function l(l +1)C_l deviates from a horizontal line and grows with l, for l
\geq 2. We show that the inclusion of the modulating (transfer) function
terminates the growth and forms the first peak, recently observed. We fit the
theoretical curves to the position and height of the first peak, as well as to
the observed dipole, varying three parameters: red-shift at decoupling,
red-shift at matter-radiation equality, and slope of the primordial spectrum.
It appears that there is always a deficit, as compared with the COBE
observations, at small multipoles, l \sim 10. We demonstrate that a reasonable
and theoretically expected amount of gravitational waves bridges this gap at
small multipoles, leaving the other fits as good as before. We show that the
observationally acceptable models permit somewhat `blue' primordial spectra.
This allows one to avoid the infra-red divergence of cosmological
perturbations, which is otherwise present.Comment: prints to 25 pages including 14 figures, several additional sentences
on interpretation, new references, to appear in Int. Journ. Mod. Physics
Separating E and B types of polarization on an incomplete sky
Detection of magnetic-type (-type) polarization in the Cosmic Microwave
Background (CMB) radiation plays a crucial role in probing the relic
gravitational wave (RGW) background. In this paper, we propose a new method to
deconstruct a polarization map on an incomplete sky in real space into purely
electric and magnetic polarization type maps, and
, respectively. The main properties of our
approach are as follows: Firstly, the fields and
are constructed in real space with a minimal loss
of information. This loss of information arises due to the removal of a narrow
edge of the constructed map in order to remove various numerical errors,
including those arising from finite pixel size. Secondly, this method is fast
and can be efficiently applied to high resolution maps due to the use of the
fast spherical harmonics transformation. Thirdly, the constructed fields,
and , are scalar
fields. For this reason various techniques developed to deal with temperature
anisotropy maps can be directly applied to analyze these fields. As a concrete
example, we construct and analyze an unbiased estimator for the power spectrum
of the -mode of polarization . Basing our results on the
performance of this estimator, we discuss the RGW detection ability of two
future ground-based CMB experiments, QUIET and POLARBEAR.Comment: 43 pages, 15 figures, 1 table. The finial version, will appear in PR
Constraint on the early Universe by relic gravitational waves: From pulsar timing observations
Recent pulsar timing observations by the Parkers Pulsar Timing Array and
European Pulsar Timing Array teams obtained the constraint on the relic
gravitational waves at the frequency , which provides the
opportunity to constrain , the Hubble parameter when these waves crossed
the horizon during inflation. In this paper, we investigate this constraint by
considering the general scenario for the early Universe: we assume that the
effective (average) equation-of-state before the big bang nucleosynthesis
stage is a free parameter. In the standard hot big-bang scenario with ,
we find that the current PPTA result follows a bound H_*\leq
1.15\times10^{-1}\mpl, and the EPTA result follows H_*\leq
6.92\times10^{-2}\mpl. We also find that these bounds become much tighter in
the nonstandard scenarios with . When , the bounds become
H_*\leq5.89\times10^{-3}\mpl for the current PPTA and
H_*\leq3.39\times10^{-3}\mpl for the current EPTA. In contrast, in the
nonstandard scenario with , the bound becomes H_*\leq7.76\mpl for the
current PPTA.Comment: 8 pages, 3 figures, 1 table, PRD in pres
Ultra-cold fermions in real or fictitious magnetic fields: The BCS-BEC evolution and the type-I--type-II transition
We study ultra-cold neutral fermion superfluids in the presence of fictitious
magnetic fields, as well as charged fermion superfluids in the presence of real
magnetic fields. Charged fermion superfluids undergo a phase transition from
type-I to type-II superfluidity, where the magnetic properties of the
superfluid change from being a perfect diamagnet without vortices to a partial
diamagnet with the emergence of the Abrikosov vortex lattice. The transition
from type-I to type-II superfluidity is tunned by changing the scattering
parameter (interaction) for fixed density. We also find that neutral fermion
superfluids such as Li and K are extreme type-II superfluids, and
that they are more robust to the penetration of a fictitious magnetic field in
the BCS-BEC crossover region near unitarity, where the critical fictitious
magnetic field reaches a maximum as a function of the scattering parameter
(interaction).Comment: 4+ pages with 2 figure
Quantum Effects In Cosmology
Contents:
Introduction. The Present State of the Universe.
What Can We Expect From a Complete Cosmological Theory?
An Overview of Quantum Effects in Cosmology.
Parametric (Superadiabatic) Amplification of Classical Waves.
Graviton Creation in the Inflationary Universe.
Quantum States of a Harmonic Oscillator.
Squeezed Quantum States of Relic Gravitons and Primordial Density
Perturbations.
Quantum Cosmology, Minisuperspace Models and Inflation.
From the Space of Classical Solutions to the Space of Wave Functions.
On the Probability of Quantum Tunneling From "Nothing".
Duration of InflationComment: (43 pages, to be published in "The Origin of Structure in the
Universe", ed. P.Nardone
Phase diagram of a polydisperse soft-spheres model for liquids and colloids
The phase diagram of soft spheres with size dispersion has been studied by
means of an optimized Monte Carlo algorithm which allows to equilibrate below
the kinetic glass transition for all sizes distribution. The system
ubiquitously undergoes a first order freezing transition. While for small size
dispersion the frozen phase has a crystalline structure, large density
inhomogeneities appear in the highly disperse systems. Studying the interplay
between the equilibrium phase diagram and the kinetic glass transition, we
argue that the experimentally found terminal polydispersity of colloids is a
purely kinetic phenomenon.Comment: Version to be published in Physical Review Letter
- …