146 research outputs found

    Sensing Glucose in the Central Melanocortin Circuits of Rainbow Trout: A Morphological Study

    Get PDF
    In mammals, glucosensing markers reside in brain areas known to play an important role in the control of food intake. The best characterized glucosensing mechanism is that dependent on glucokinase (GK) whose activation by increased levels of glucose leads in specific hypothalamic neurons to decreased or increased activity, ultimately leading to decreased food intake. In fish, evidence obtained in recent years suggested the presence of GK-like immunoreactive cells in different brain areas related to food intake control. However, it has not been established yet whether or not those neuronal populations having glucosensing capacity are the same that express the neuropeptides involved in the metabolic control of food intake. Therefore, we assessed through dual fluorescent in situ hybridization the possible expression of GK in the melanocortinergic neurons expressing proopiomelanocortin (POMC) or agouti-related protein (AGRP). POMC and AGRP expression localized exclusively in the rostral hypothalamus, in the ventral pole of the lateral tuberal nucleus, the homolog of the mammalian arcuate nucleus. Hypothalamic GK expression confined to the ependymal cells coating the ventral pole of the third ventricle but some expression level occurred in the AGRP neurons. GK expression seems to be absent in the hypothalamic POMC neurons. These results suggest that AGRP neurons might sense glucose directly through a mechanism involving GK. In contrast, POMC neurons would not directly respond to glucose through GK and would require presynaptic inputs to sense glucose. Ependymal cells could play a critical role relying glucose metabolic information to the central circuitry regulating food intake in fish, especially in POMC neurons

    Ultracool dwarf benchmarks with \emph{Gaia} primaries

    Get PDF
    This article has been accepted for publication in Monthly Notices of the Royal Astronomical Society. © 2017 The Author(s). Published by Oxford University Press on behalf of the Royal Astronomical Society. All rights reserved.We explore the potential of \emph{Gaia} for the field of benchmark ultracool/brown dwarf companions, and present the results of an initial search for metal-rich/metal-poor systems. A simulated population of resolved ultracool dwarf companions to \emph{Gaia} primary stars is generated and assessed. Of order \sim24,000 companions should be identifiable outside of the Galactic plane (b>10|b| > 10\,deg) with large-scale ground- and space-based surveys including late M, L, T, and Y types. Our simulated companion parameter space covers 0.02M/M0.10.02 \le M/M_{\odot} \le 0.1, 0.1age/Gyr140.1 \le {\rm age/Gyr} \le 14, and 2.5[Fe/H]0.5-2.5 \le {\rm [Fe/H]} \le 0.5, with systems required to have a false alarm probability 0.6\, kau}\,Peer reviewedFinal Accepted Versio

    Allosteric Analysis of Glucocorticoid Receptor-DNA Interface Induced by Cyclic Py-Im Polyamide: A Molecular Dynamics Simulation Study

    Get PDF
    Background: It has been extensively developed in recent years that cell-permeable small molecules, such as polyamide, can be programmed to disrupt transcription factor-DNA interfaces and can silence aberrant gene expression. For example, cyclic pyrrole-imidazole polyamide that competes with glucocorticoid receptor (GR) for binding to glucocorticoid response elements could be expected to affect the DNA dependent binding by interfering with the protein-DNA interface. However, how such small molecules affect the transcription factor-DNA interfaces and gene regulatory pathways through DNA structure distortion is not fully understood so far. Methodology/Principal Findings: In the present work, we have constructed some models, especially the ternary model of polyamides+DNA+GR DNA-binding domain (GRDBD) dimer, and carried out molecular dynamics simulations and free energy calculations for them to address how polyamide molecules disrupt the GRDBD and DNA interface when polyamide and protein bind at the same sites on opposite grooves of DNA. Conclusions/Significance: We found that the cyclic polyamide binding in minor groove of DNA can induce a large structural perturbation of DNA, i.e. a.4 A ˚ widening of the DNA minor groove and a compression of the major groove by more than 4A ˚ as compared with the DNA molecule in the GRDBD dimer+DNA complex. Further investigations for the ternary system of polyamides+DNA+GRDBD dimer and the binary system of allosteric DNA+GRDBD dimer revealed that the compression o

    Disruption of Higher Order DNA Structures in Friedreich's Ataxia (GAA)n Repeats by PNA or LNA Targeting

    Get PDF
    Expansion of (GAA)n repeats in the first intron of the Frataxin gene is associated with reduced mRNA and protein levels and the development of Friedreich’s ataxia. (GAA)n expansions form non-canonical structures, including intramolecular triplex (H-DNA), and R-loops and are associated with epigenetic modifications. With the aim of interfering with higher order H-DNA (like) DNA structures within pathological (GAA)n expansions, we examined sequence-specific interaction of peptide nucleic acid (PNA) with (GAA)n repeats of different lengths (short: n=9, medium: n=75 or long: n=115) by chemical probing of triple helical and single stranded regions. We found that a triplex structure (H-DNA) forms at GAA repeats of different lengths; however, single stranded regions were not detected within the medium size pathological repeat, suggesting the presence of a more complex structure. Furthermore, (GAA)4-PNA binding of the repeat abolished all detectable triplex DNA structures, whereas (CTT)5-PNA did not. We present evidence that (GAA)4-PNA can invade the DNA at the repeat region by binding the DNA CTT strand, thereby preventing non-canonical-DNA formation, and that triplex invasion complexes by (CTT)5-PNA form at the GAA repeats. Locked nucleic acid (LNA) oligonucleotides also inhibited triplex formation at GAA repeat expansions, and atomic force microscopy analysis showed significant relaxation of plasmid morphology in the presence of GAA-LNA. Thus, by inhibiting disease related higher order DNA structures in the Frataxin gene, such PNA and LNA oligomers may have potential for discovery of drugs aiming at recovering Frataxin expression

    Museum and herbarium collections for biodiversity research in Angola

    Get PDF
    The importance of museum and herbarium collections is especially great in biodiverse countries such as Angola, an importance as great as the challenges facing the effective and sustained management of such facilities. The interface that Angola represents between tropical humid climates and semi-desert and desert regions creates conditions for diverse habitats with many rare and endemic species. Museum and herbarium collections are essential foundations for scientific studies, providing references for identifying the components of this diversity, as well as serving as repositories of material for future study. In this review we summarise the history and current status of museum and herbarium collections in Angola and of information on the specimens from Angola in foreign collections. Finally, we provide examples of the uses of museum and herbarium collections, as well as a roadmap towards strengthening the role of collections in biodiversity knowledge generationinfo:eu-repo/semantics/publishedVersio

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]
    corecore