36 research outputs found

    Non-ideal artificial phase discontinuity in long Josephson 0-kappa-junctions

    Full text link
    We investigate the creation of an arbitrary κ\kappa-discontinuity of the Josephson phase in a long Nb-AlO_x-Nb Josephson junction (LJJ) using a pair of tiny current injectors, and study the formation of fractional vortices formed at this discontinuity. The current I_inj, flowing from one injector to the other, creates a phase discontinuity kappa ~ I_inj. The calibration of injectors is discussed in detail. The small but finite size of injectors leads to some deviations of the properties of such a 0-kappa-LJJ from the properties of a LJJ with an ideal kappa-discontinuity. These experimentally observed deviations in the dependence of the critical current on I_inj$ and magnetic field can be well reproduced by numerical simulation assuming a finite injector size. The physical origin of these deviations is discussed.Comment: Submitted to Phys. Rev. B (12 figures). v 2: refs updated, long eqs fixed v 3: major changes, fractional vortex dynamics exclude

    Experimental evidence of a {\phi} Josephson junction

    Full text link
    We demonstrate experimentally the existence of Josephson junctions having a doubly degenerate ground state with an average Josephson phase \psi=\pm{\phi}. The value of {\phi} can be chosen by design in the interval 0<{\phi}<\pi. The junctions used in our experiments are fabricated as 0-{\pi} Josephson junctions of moderate normalized length with asymmetric 0 and {\pi} regions. We show that (a) these {\phi} Josephson junctions have two critical currents, corresponding to the escape of the phase {\psi} from -{\phi} and +{\phi} states; (b) the phase {\psi} can be set to a particular state by tuning an external magnetic field or (c) by using a proper bias current sweep sequence. The experimental observations are in agreement with previous theoretical predictions

    Quantum tunneling of semifluxons

    Full text link
    We consider a system of two semifluxons of opposite polarity in a 0-pi-0 long Josephson junction, which classically can be in one of two degenerate states: up-down or down-up. When the distance aa between the 0-pi boundaries (semifluxon's centers) is a bit larger than the crossover distance aca_c, the system can switch from one state to the other due to thermal fluctuations or quantum tunneling. We map this problem to the dynamics of a single particle in a double well potential and estimate parameters for which quantum effects emerge. We also determine the classical-to-quantum crossover temperature as well as the tunneling rate (energy level splitting) between the states up-down and down-up.Comment: submitted to PRB, comments/questions are welcom

    Geometric pi Josephson junction in d-wave superconducting thin films

    Full text link
    A novel way to realize a pi Josephson junction is proposed, based on a weak link in an unconventional d-wave superconductor with appropriately chosen boundary geometry. The critical current of such a junction is calculated from a fully selfconsistent solution of microscopic Eilenberger theory of superconductivity. The results clearly show, that a transition to a pi Josephson junction occurs for both low temperatures and small sizes of the geometry.Comment: 3 pages, 3 figure

    Oscillatory eigenmodes and stability of one and two arbitrary fractional vortices in long Josephson 0-kappa-junctions

    Get PDF
    We investigate theoretically the eigenmodes and the stability of one and two arbitrary fractional vortices pinned at one and two κ\kappa-phase discontinuities in a long Josephson junction. In the particular case of a single κ\kappa-discontinuity, a vortex is spontaneously created and pinned at the boundary between the 0 and κ\kappa-regions. In this work we show that only two of four possible vortices are stable. A single vortex has an oscillatory eigenmode with a frequency within the plasma gap. We calculate this eigenfrequency as a function of the fractional flux carried by a vortex. For the case of two vortices, pinned at two κ\kappa-discontinuities situated at some distance aa from each other, splitting of the eigenfrequencies occur. We calculate this splitting numerically as a function of aa for different possible ground states. We also discuss the presence of a critical distance below which two antiferromagnetically ordered vortices form a strongly coupled ``vortex molecule'' that behaves as a single object and has only one eigenmode.Comment: submitted to Phys. Rev. B (

    Theory of fractional vortex escape in a 0-kappa long Josephson junction

    Full text link
    We consider a fractional Josephson vortex in an infinitely long 0-kappa Josephson junction. A uniform bias current applied to the junction exerts a Lorentz force acting on a vortex. When the bias current becomes equal to the critical (or depinning) current, the Lorentz force tears away an integer fluxon and the junction switches to the resistive state. In the presence of thermal and quantum fluctuations this escape process takes place with finite probability already at subcritical values of the bias current. We analyze the escape of a fractional vortex by mapping the Josephson phase dynamics to the dynamics of a single particle in a metastable potential and derive the effective parameters of this potential. This allows us to predict the behavior of the escape rate as a function of the topological charge of the vortex

    Controllable plasma energy bands in a 1D crystal of fractional Josephson vortices

    Get PDF
    We consider a 1D chain of fractional vortices in a long Josephson junction with alternating ±κ\pm\kappa phase discontinuities. Since each vortex has its own eigenfrequency, the inter-vortex coupling results in eigenmode splitting and in the formation of an oscillatory energy band for plasma waves. The band structure can be controlled at the design time by choosing the distance between vortices or \emph{during experiment} by varying the topological charge of vortices or the bias current. Thus one can construct an artificial vortex crystal with controllable energy bands for plasmons.Comment: 4 pages, 2 Fig

    0-pi Josephson tunnel junctions with ferromagnetic barrier

    Full text link
    We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.Comment: submitted to PR

    Dynamics of semifluxons in Nb long Josephson 0-pi junctions

    Full text link
    We propose, implement and test experimentally long Josephson 0-pi junctions fabricated using conventional Nb-AlOx-Nb technology. We show that using a pair of current injectors, one can create an arbitrary discontinuity of the Josephson phase and in particular a pi-discontinuity, just like in d-wave/s-wave or in d-wave/d-wave junctions, and study fractional Josephson vortices which spontaneously appear. Moreover, using such junctions, we can investigate the \emph{dynamics} of the fractional vortices -- a domain which is not yet available for natural 0-pi-junctions due to their inherently high damping. We observe half-integer zero-field steps which appear on the current-voltage characteristics due to hopping of semifluxons.Comment: Fractional vortices in conventional superconductors ;-

    Evidence of Spatially Inhomogeous Pairing on the Insulating Side of a Disorder-Tuned Superconductor-Insulator Transition

    Full text link
    Measurements of transport properties of amorphous insulating indium oxide thin films have been interpreted as evidence of the presence of superconducting islands on the insulating side of a disorder-tuned superconductor-insulator transition. Although the films are not granular, the behavior is similar to that observed in granular films. The results support theoretical models in which the destruction of superconductivity by disorder produces spatially inhomogenous pairing with a spectral gap.Comment: Revised title and content/argument. Totals: 4 pages, 3 figure
    corecore