169 research outputs found

    Sero-epidemiological evaluation of changes in Plasmodium falciparum and Plasmodium vivax transmission patterns over the rainy season in Cambodia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In Cambodia, malaria transmission is low and most cases occur in forested areas. Sero-epidemiological techniques can be used to identify both areas of ongoing transmission and high-risk groups to be targeted by control interventions. This study utilizes repeated cross-sectional data to assess the risk of being malaria sero-positive at two consecutive time points during the rainy season and investigates who is most likely to sero-convert over the transmission season.</p> <p>Methods</p> <p>In 2005, two cross-sectional surveys, one in the middle and the other at the end of the malaria transmission season, were carried out in two ecologically distinct regions in Cambodia. Parasitological and serological data were collected in four districts. Antibodies to <it>Plasmodium falciparum </it>Glutamate Rich Protein (GLURP) and <it>Plasmodium vivax </it>Merozoite Surface Protein-1<sub>19 </sub>(MSP-1<sub>19</sub>) were detected using Enzyme Linked Immunosorbent Assay (ELISA). The force of infection was estimated using a simple catalytic model fitted using maximum likelihood methods. Risks for sero-converting during the rainy season were analysed using the Classification and Regression Tree (CART) method.</p> <p>Results</p> <p>A total of 804 individuals participating in both surveys were analysed. The overall parasite prevalence was low (4.6% and 2.0% for <it>P. falciparum </it>and 7.9% and 6.0% for <it>P. vivax </it>in August and November respectively). <it>P. falciparum </it>force of infection was higher in the eastern region and increased between August and November, whilst <it>P. vivax </it>force of infection was higher in the western region and remained similar in both surveys. In the western region, malaria transmission changed very little across the season (for both species). CART analysis for <it>P. falciparum </it>in the east highlighted age, ethnicity, village of residence and forest work as important predictors for malaria exposure during the rainy season. Adults were more likely to increase their antibody responses to <it>P. falciparum </it>during the transmission season than children, whilst members of the Charay ethnic group demonstrated the largest increases.</p> <p>Discussion</p> <p>In areas of low transmission intensity, such as in Cambodia, the analysis of longitudinal serological data enables a sensitive evaluation of transmission dynamics. Consecutive serological surveys allow an insight into spatio-temporal patterns of malaria transmission. The use of CART enabled multiple interactions to be accounted for simultaneously and permitted risk factors for exposure to be clearly identified.</p

    A physical layer network coding based modify-and-forward with opportunistic secure cooperative transmission protocol

    Get PDF
    This paper investigates a new secure relaying scheme, namely physical layer network coding based modify-and-forward (PMF), in which a relay node linearly combines the decoded data sent by a source node with an encrypted key before conveying the mixed data to a destination node. We first derive the general expression for the generalized secrecy outage probability (GSOP) of the PMF scheme and then use it to analyse the GSOP performance of various relaying and direct transmission strategies. The GSOP performance comparison indicates that these transmission strategies offer different advantages depending on the channel conditions and target secrecy rates, and relaying is not always desirable in terms of secrecy. Subsequently, we develop an opportunistic secure transmission protocol for cooperative wireless relay networks and formulate an optimisation problem to determine secrecy rate thresholds (SRTs) to dynamically select the optimal transmission strategy for achieving the lowest GSOP. The conditions for the existence of the SRTs are derived for various channel scenarios

    Spatial clustering and risk factors of malaria infections in Ratanakiri Province, Cambodia

    Get PDF
    Background: Malaria incidence worldwide has steadily declined over the past decades. Consequently, increasingly more countries will proceed from control to elimination. The malaria distribution in low incidence settings appears patchy, and local transmission hotspots are a continuous source of infection. In this study, species-specific clusters and associated risk factors were identified based on malaria prevalence data collected in the north-east of Cambodia. In addition, Plasmodium falciparum genetic diversity, population structure and gene flows were studied.Method: In 2012, blood samples from 5793 randomly selected individuals living in 117 villages were collected from Ratanakiri province, Cambodia. Malariometric data of each participant were simultaneously accumulated using a standard questionnaire. A two-step PCR allowed for species-specific detection of malaria parasites, and SNPgenotyping of P. falciparum was performed. SaTScan was used to determine species-specific areas of elevated risk to infection, and univariate and multivariate risk analyses were carried out.Result: PCR diagnosis found 368 positive individuals (6.4%) for malaria parasites, of which 22% contained mixed species infections. The occurrence of these co-infections was more frequent than expected. Specific areas with elevated risk of infection were detected for all Plasmodium species. The clusters for Falciparum, Vivax and Ovale malaria appeared in the north of the province along the main river, while the cluster for Malariae malaria was situated elsewhere. The relative risk to be a malaria parasite carrier within clusters along the river was twice that outside the area. The main risk factor associated with three out of four malaria species was overnight stay in the plot hut, a human behaviour associated with indigenous farming. Haplotypes did not show clear geographical population structure, but pairwise Fst value comparison indicated higher parasite flow along the river.Discussion: Spatial aggregation of malaria parasite carriers, and the identification of malaria species-specific risk factors provide key insights in malaria epidemiology in low transmission settings, which can guide targeted supplementary interventions. Consequently, future malaria programmes in the province should implement additional specific policies targeting households staying overnight at their farms outside the village, in addition to migrants and forest workers

    Identification and denitrification characteristics of a salt-tolerant denitrifying bacterium Pannonibacter phragmitetus F1

    Get PDF
    A salt-tolerant denitrifying bacterium F1 was isolated in this study, which has high nitrite (NO -N) and nitrate (NO -N) removal abilities. The salt tolerance capacity of strain F1 was further verified and the effects of initial pH, initial NaNO concentration and inoculation size on the denitrification capacity of strain F1 under saline conditions were evaluated. Strain F1 was identified as Pannonibacter phragmitetus and named Pannonibacter phragmitetus F1. This strain can tolerate NaCl concentrations up to 70 g/L, and its most efficient denitrification capacity was observed at NaCl concentrations of 0-10 g/L. Under non-saline condition, the removal percentages of NO -N and NO -N by strain Pannonibacter phragmitetus F1 at pH of 10 and inoculation size of 5% were 100% and 83%, respectively, after cultivation for 5 days. Gas generation was observed during the cultivation, indicating that an efficient denitrification performance was achieved. When pH was 10 and the inoculation size was 5%, both the highest removal percentages of NO -N (99%) and NO -N (95%) by strain Pannonibacter phragmitetus F1 were observed at NaCl concentration of 10 g/L. When the NaCl concentration was 10 g/L, strain Pannonibacter phragmitetus F1 can adapt to a wide range of neutral and alkaline environments (pH of 7-10) and is highly tolerant of NaNO concentration (0.4-1.6 g/L). In conclusion, strain Pannonibacter phragmitetus F1 has a great potential to be applied in the treatment of saline wastewater containing high nitrogen concentrations, e.g. coastal aquaculture wastewater
    • …
    corecore