402 research outputs found

    Topological nature of spinons and holons: Elementary excitations from matrix product states with conserved symmetries

    Get PDF
    We develop variational matrix product state (MPS) methods with symmetries to determine dispersion relations of one dimensional quantum lattices as a function of momentum and preset quantum number. We test our methods on the XXZ spin chain, the Hubbard model and a non-integrable extended Hubbard model, and determine the excitation spectra with a precision similar to the one of the ground state. The formulation in terms of quantum numbers makes the topological nature of spinons and holons very explicit. In addition, the method also enables an easy and efficient direct calculation of the necessary magnetic field or chemical potential required for a certain ground state magnetization or particle density.Comment: 13 pages, 4 pages appendix, 8 figure

    Faster Methods for Contracting Infinite 2D Tensor Networks

    Get PDF
    We revisit the corner transfer matrix renormalization group (CTMRG) method of Nishino and Okunishi for contracting two-dimensional (2D) tensor networks and demonstrate that its performance can be substantially improved by determining the tensors using an eigenvalue solver as opposed to the power method used in CTMRG. We also generalize the variational uniform matrix product state (VUMPS) ansatz for diagonalizing 1D quantum Hamiltonians to the case of 2D transfer matrices and discuss similarities with the corner methods. These two new algorithms will be crucial to improving the performance of variational infinite projected entangled pair state (PEPS) methods.Comment: 20 pages, 5 figures, V. Zauner-Stauber previously also published under the name V. Zaune

    Synthetic virus-like gene delivery systems

    Get PDF

    Transfer Matrices and Excitations with Matrix Product States

    Full text link
    We investigate the relation between static correlation functions in the ground state of local quantum many-body Hamiltonians and the dispersion relations of the corresponding low energy excitations using the formalism of tensor network states. In particular, we show that the Matrix Product State Transfer Matrix (MPS-TM) - a central object in the computation of static correlation functions - provides important information about the location and magnitude of the minima of the low energy dispersion relation(s) and present supporting numerical data for one-dimensional lattice and continuum models as well as two-dimensional lattice models on a cylinder. We elaborate on the peculiar structure of the MPS-TM's eigenspectrum and give several arguments for the close relation between the structure of the low energy spectrum of the system and the form of static correlation functions. Finally, we discuss how the MPS-TM connects to the exact Quantum Transfer Matrix (QTM) of the model at zero temperature. We present a renormalization group argument for obtaining finite bond dimension approximations of MPS, which allows to reinterpret variational MPS techniques (such as the Density Matrix Renormalization Group) as an application of Wilson's Numerical Renormalization Group along the virtual (imaginary time) dimension of the system.Comment: 39 pages (+8 pages appendix), 14 figure

    Symmetry Breaking and the Geometry of Reduced Density Matrices

    Get PDF
    The concept of symmetry breaking and the emergence of corresponding local order parameters constitute the pillars of modern day many body physics. The theory of quantum entanglement is currently leading to a paradigm shift in understanding quantum correlations in many body systems and in this work we show how symmetry breaking can be understood from this wavefunction centered point of view. We demonstrate that the existence of symmetry breaking is a consequence of the geometric structure of the convex set of reduced density matrices of all possible many body wavefunctions. The surfaces of those convex bodies exhibit non-analytic behavior in the form of ruled surfaces, which turn out to be the defining signatures for the emergence of symmetry breaking and of an associated order parameter. We illustrate this by plotting the convex sets arising in the context of three paradigmatic examples of many body systems exhibiting symmetry breaking: the quantum Ising model in transverse magnetic field, exhibiting a second order quantum phase transition; the classical Ising model at finite temperature in two dimensions, which orders below a critical temperature TcT_c; and a system of free bosons at finite temperature in three dimensions, exhibiting the phenomenon of Bose-Einstein condensation together with an associated order parameter ψ\langle\psi\rangle. Remarkably, these convex sets look all very much alike. We believe that this wavefunction based way of looking at phase transitions demystifies the emergence of order parameters and provides a unique novel tool for studying exotic quantum phenomena.Comment: 5 pages, 3 figures, Appendix with 2 pages, 3 figure

    On the connection between mutually unbiased bases and orthogonal Latin squares

    Full text link
    We offer a piece of evidence that the problems of finding the number of mutually unbiased bases (MUB) and mutually orthogonal Latin squares (MOLS) might not be equivalent. We study a particular procedure which has been shown to relate the two problems and generates complete sets of MUBs in power-of-prime dimensions and three MUBs in dimension six. For these cases, every square from an augmented set of MOLS has a corresponding MUB. We show that this no longer holds for certain composite dimensions.Comment: 6 pages, submitted to Proceedings of CEWQO 200

    The detailed mechanism of the eta production in pp scattering up to the Tlab = 4.5 GeV

    Full text link
    Contrary to very early beliefs, the experimental cross section data for the eta production in proton-proton scattering are well described if pi and only eta meson exchange diagrams are used to calculate the Born term. The inclusion of initial and final state interactions is done in the factorization approximation by using the inverse square of the Jost function. The two body Jost functions are obtained from the S matrices in the low energy effective range approximation. The danger of double counting in the p-eta final state interaction is discussed. It is shown that higher partial waves in meson-nucleon amplitudes do not contribute significantly bellow excess energy of Q=100 MeV. Known difficulties of reducing the multi resonance model to a single resonance one are illustrated.Comment: 10 pages, 5 figures, corrected typos in relation (3), changed content (added section with differential cross sections
    corecore