309 research outputs found

    Long-Range Interaction of Spin-Qubits via Ferromagnets

    Full text link
    We propose a mechanism of coherent coupling between distant spin qubits interacting dipolarly with a ferromagnet. We derive an effective two-spin interaction Hamiltonian and estimate the coupling strength. We discuss the mechanisms of decoherence induced solely by the coupling to the ferromagnet and show that there is a regime where it is negligible. Finally, we present a sequence for the implementation of the entangling CNOT gate and estimate the corresponding operation time to be a few tens of nanoseconds. A particularly promising application of our proposal is to atomistic spin-qubits such as silicon-based qubits and NV-centers in diamond to which existing coupling schemes do not apply.Comment: 6 pages, 7 pages of appendi

    From coupled Rashba electron- and hole-gas layers to three-dimensional topological insulators

    Get PDF
    We introduce a system of stacked two-dimensional electron-and hole-gas layers with Rashba spin-orbit interaction and show that the tunnel coupling between the layers induces a strong three-dimensional (3D) topological insulator phase. At each of the two-dimensional bulk boundaries we find the spectrum consisting of a single anisotropic Dirac cone, which we show by analytical and numerical calculations. Our setup has a unit cell consisting of four tunnel coupled Rashba layers and presents a synthetic strong 3D topological insulator and is distinguished by its rather high experimental feasibility

    Higher‐Order Topological Band Structures

    Get PDF
    The interplay of topology and symmetry in a material's band structure may result in various patterns of topological states of different dimensionality on the boundary of a crystal. The protection of these “higher‐order” boundary states comes from topology, with constraints imposed by symmetry. Herein, the bulk–boundary correspondence of topological crystalline band structures, which relates the topology of the bulk band structure to the pattern of the boundary states, is reviewed. Furthermore, recent advances in the K‐theoretic classification of topological crystalline band structures are discussed

    High-efficiency resonant amplification of weak magnetic fields for single spin magnetometry at room temperature

    Get PDF
    Magnetic resonance techniques not only provide powerful imaging tools that have revolutionized medicine, but they have a wide spectrum of applications in other fields of science like biology, chemistry, neuroscience, and physics. However, current state-of-the-art magnetometers are unable to detect a single nuclear spin unless the tip-to-sample separation is made suffciently small. Here,we demonstrate theoretically that by placing a ferromagnetic particle between a nitrogen-vacancy (NV) magnetometer and a target spin, the magnetometer sensitivity is improved dramatically. Using materials and techniques already experimentally available, our proposed setup is sensitive enough to detect a single nuclear spin within ten milliseconds of data acquisition at room temperature. The sensitivity is practically unchanged when the ferromagnet surface to the target spin separation is smaller than the ferromagnet lateral dimensions; typically about a tenth of a micron. This scheme further benefits when used for NV ensemble measurements, enhancing sensitivity by an additional three orders of magnitude. Our proposal opens the door for nanoscale nuclear magnetic resonance (NMR) on biological material under ambient conditions.Physic

    Modelling the atmospheric dispersion of radiotracers in small-scale, controlled detonations: validation of dispersion models using field test data

    Get PDF
    A series of modelling exercises, based on field tests conducted in the Czech Republic, were carried out by the ‘Urban’ Working Groups as part of the International Atomic Energy Agency’s Environmental Modelling for Radiation Safety II, Modelling and Data for Radiological Impact Assessment (MODARIA) I and MODARIA II international data compilation and model validation programmes. In the first two of these programmes, data from a series of field tests involving dispersion of a radiotracer, 99mTc, from small-scale, controlled detonations were used in a comparison of model predictions with field measurements of deposition. In the third programme, data from a similar field test, involving dispersion of 140La instead of 99mTc, were used. Use of longer-lived 140La as a radiotracer allowed a greater number of measurements to be made over a greater distance from the dispersion point and in more directions than was possible for the earlier tests involving shorter-lived 99mTc. The modelling exercises included both intercomparison of model predictions from several participants and comparison of model predictions with the measured data. Several models (HotSpot, LASAIR, ADDAM/CSA-ERM, plus some research models) were used in the comparisons, which demonstrated the challenges of modelling dispersion of radionuclides from detonations and the need for appropriate meteorological measurements

    Stochastic Drift in Mitochondrial DNA Point Mutations: A Novel Perspective Ex Silico

    Get PDF
    The mitochondrial free radical theory of aging (mFRTA) implicates Reactive Oxygen Species (ROS)-induced mutations of mitochondrial DNA (mtDNA) as a major cause of aging. However, fifty years after its inception, several of its premises are intensely debated. Much of this uncertainty is due to the large range of values in the reported experimental data, for example on oxidative damage and mutational burden in mtDNA. This is in part due to limitations with available measurement technologies. Here we show that sample preparations in some assays necessitating high dilution of DNA (single molecule level) may introduce significant statistical variability. Adding to this complexity is the intrinsically stochastic nature of cellular processes, which manifests in cells from the same tissue harboring varying mutation load. In conjunction, these random elements make the determination of the underlying mutation dynamics extremely challenging. Our in silico stochastic study reveals the effect of coupling the experimental variability and the intrinsic stochasticity of aging process in some of the reported experimental data. We also show that the stochastic nature of a de novo point mutation generated during embryonic development is a major contributor of different mutation burdens in the individuals of mouse population. Analysis of simulation results leads to several new insights on the relevance of mutation stochasticity in the context of dividing tissues and the plausibility of ROS ”vicious cycle” hypothesis

    Oxidative stress induces degradation of mitochondrial DNA

    Get PDF
    Mitochondrial DNA (mtDNA) is located in close proximity of the respiratory chains, which are the main cellular source of reactive oxygen species (ROS). ROS can induce oxidative base lesions in mtDNA and are believed to be an important cause of the mtDNA mutations, which accumulate with aging and in diseased states. However, recent studies indicate that cumulative levels of base substitutions in mtDNA can be very low even in old individuals. Considering the reduced complement of DNA repair pathways available in mitochondria and higher susceptibility of mtDNA to oxidative damage than nDNA, it is presently unclear how mitochondria manage to maintain the integrity of their genetic information in the face of the permanent exposure to ROS. Here we show that oxidative stress can lead to the degradation of mtDNA and that strand breaks and abasic sites prevail over mutagenic base lesions in ROS-damaged mtDNA. Furthermore, we found that inhibition of base excision repair enhanced mtDNA degradation in response to both oxidative and alkylating damage. These observations suggest a novel mechanism for the protection of mtDNA against oxidative insults whereby a higher incidence of lesions to the sugar–phosphate backbone induces degradation of damaged mtDNA and prevents the accumulation of mutagenic base lesions

    Resistance Exercise Reverses Aging in Human Skeletal Muscle

    Get PDF
    Human aging is associated with skeletal muscle atrophy and functional impairment (sarcopenia). Multiple lines of evidence suggest that mitochondrial dysfunction is a major contributor to sarcopenia. We evaluated whether healthy aging was associated with a transcriptional profile reflecting mitochondrial impairment and whether resistance exercise could reverse this signature to that approximating a younger physiological age. Skeletal muscle biopsies from healthy older (N = 25) and younger (N = 26) adult men and women were compared using gene expression profiling, and a subset of these were related to measurements of muscle strength. 14 of the older adults had muscle samples taken before and after a six-month resistance exercise-training program. Before exercise training, older adults were 59% weaker than younger, but after six months of training in older adults, strength improved significantly (P<0.001) such that they were only 38% lower than young adults. As a consequence of age, we found 596 genes differentially expressed using a false discovery rate cut-off of 5%. Prior to the exercise training, the transcriptome profile showed a dramatic enrichment of genes associated with mitochondrial function with age. However, following exercise training the transcriptional signature of aging was markedly reversed back to that of younger levels for most genes that were affected by both age and exercise. We conclude that healthy older adults show evidence of mitochondrial impairment and muscle weakness, but that this can be partially reversed at the phenotypic level, and substantially reversed at the transcriptome level, following six months of resistance exercise training
    corecore