3,647 research outputs found

    Evershed clouds as precursors of moving magnetic features around sunspots

    Full text link
    The relation between the Evershed flow and moving magnetic features (MMFs) is studied using high-cadence, simultaneous spectropolarimetric measurements of a sunspot in visible (630.2 nm) and near-infrared (1565 nm) lines. Doppler velocities, magnetograms, and total linear polarization maps are calculated from the observed Stokes profiles. We follow the temporal evolution of two Evershed clouds that move radially outward along the same penumbral filament. Eventually, the clouds cross the visible border of the spot and enter the moat region, where they become MMFs. The flux patch farther from the sunspot has the same polarity of the spot, while the MMF closer to it has opposite polarity and exhibits abnormal circular polarization profiles. Our results provide strong evidence that at least some MMFs are the continuation of the penumbral Evershed flow into the moat. This, in turn, suggests that MMFs are magnetically connected to sunspots.Comment: To appear in ApJ Letters, Vol 649, 2006 September 20 issu

    Quiet Sun magnetic fields from space-borne observations: simulating Hinode's case

    Full text link
    We examine whether or not it is possible to derive the field strength distribution of quiet Sun internetwork regions from very high spatial resolution polarimetric observations in the visible. In particular, we consider the case of the spectropolarimeter attached to the Solar Optical Telescope aboard Hinode. Radiative magneto-convection simulations are used to synthesize the four Stokes profiles of the \ion{Fe}{1} 630.2 nm lines. Once the profiles are degraded to a spatial resolution of 0\farcs32 and added noise, we infer the atmospheric parameters by means of Milne-Eddington inversions. The comparison of the derived values with the real ones indicates that the visible lines yield correct internetwork field strengths and magnetic fluxes, with uncertainties smaller than \sim150 G, when a stray light contamination factor is included in the inversion. Contrary to the results of ground-based observations at 1\arcsec, weak fields are retrieved wherever the field is weak in the simulation.Comment: Accepted for publication in ApJ Letter

    ¡A los toros de Sevilla! : sainete lírico-crítico-taurino, en un acto ...

    Get PDF
    En port. consta: Estrenado con gran éxito en el Teatro del Duque de Sevilla, la noche del 8 de Abril de 1901Copia digital. Valladolid : Junta de Castilla y León. Consejería de Cultura y Turismo, 201

    The formation and disintegration of magnetic bright points observed by Sunrise/IMaX

    Full text link
    The evolution of the physical parameters of magnetic bright points (MBPs) located in the quiet Sun (mainly in the interwork) during their lifetime is studied. First we concentrate on the detailed description of the magnetic field evolution of three MBPs. This reveals that individual features follow different, generally complex, and rather dynamic scenarios of evolution. Next we apply statistical methods on roughly 200 observed MBP evolutionary tracks. MBPs are found to be formed by the strengthening of an equipartition field patch, which initially exhibits a moderate downflow. During the evolution, strong downdrafts with an average velocity of 2.4 km/s set in. These flows, taken together with the concurrent strengthening of the field, suggest that we are witnessing the occurrence of convective collapses in these features, although only 30% of them reach kG field strengths. This fraction might turn out to be larger when the new 4 m class solar telescopes are operational as observations of MBPs with current state of the art instrumentation could still be suffering from resolution limitations. Finally, when the bright point disappears (although the magnetic field often continues to exist) the magnetic field strength has dropped to the equipartition level and is generally somewhat weaker than at the beginning of the MBP's evolution. Noteworthy is that in about 10% of the cases we observe in the vicinity of the downflows small-scale strong (exceeding 2 km/s) intergranular upflows related spatially and temporally to these downflows.Comment: 19 pages, 13 figures; final version published in "The Astrophysical Journal

    Solar coronal loops associated with small-scale mixed polarity surface magnetic fields

    Get PDF
    L. P. Chitta et. al.©2017 The American Astronomical Society. All rights reserved. How and where are coronal loops rooted in the solar lower atmosphere? The details of the magnetic environment and its evolution at the footpoints of coronal loops are crucial to understanding the processes of mass and energy supply to the solar corona. To address the above question, we use high-resolution line-of-sight magnetic field data from the Imaging Magnetograph eXperiment instrument on the Sunrise balloon-borne observatory and coronal observations from the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory of an emerging active region. We find that the coronal loops are often rooted at the locations with minor small-scale but persistent opposite-polarity magnetic elements very close to the larger dominant polarity. These opposite-polarity small-scale elements continually interact with the dominant polarity underlying the coronal loop through flux cancellation. At these locations we detect small inverse Y-shaped jets in chromospheric Ca ii H images obtained from the Sunrise Filter Imager during the flux cancellation. Our results indicate that magnetic flux cancellation and reconnection at the base of coronal loops due to mixed polarity fields might be a crucial feature for the supply of mass and energy into the corona.L.P.C. acknowledges funding by the Max-Planck-Princeton Center for Plasma Physics and funding from the European Union’s Horizon 2020 research and innovation program under Marie Skłodowska-Curie grant agreement No. 707837. The German contribution to Sunrise and its reflight was funded by the Max Planck Foundation, the Strategic Innovations Fund of the President of the Max Planck Society (MPG), DLR, and private donations by supporting members of the Max Planck Society, which is gratefully acknowledged. The Spanish contribution was funded by the Ministerio de Economía y Competitividad under Projects ESP2013-47349-C6 and ESP2014-56169-C6, partially using European FEDER funds. The HAO contribution was partly funded through NASA grant number NNX13AE95G. SDO data are the courtesy of NASA/SDO and the AIA, and HMI science teams. This work was partly supported by the BK21 plus program through the National Research Foundation (NRF) funded by the Ministry of Education of KoreaPeer reviewe

    Applicability of Milne-Eddington inversions to high spatial resolution observations of the quiet Sun

    Full text link
    The physical conditions of the solar photosphere change on very small spatial scales both horizontally and vertically. Such a complexity may pose a serious obstacle to the accurate determination of solar magnetic fields. We examine the applicability of Milne-Eddington (ME) inversions to high spatial resolution observations of the quiet Sun. Our aim is to understand the connection between the ME inferences and the actual stratifications of the atmospheric parameters. We use magnetoconvection simulations of the solar surface to synthesize asymmetric Stokes profiles such as those observed in the quiet Sun. We then invert the profiles with the ME approximation. We perform an empirical analysis of the heights of formation of ME measurements and analyze the uncertainties brought about by the ME approximation. We also investigate the quality of the fits and their relationship with the model stratifications. The atmospheric parameters derived from ME inversions of high-spatial resolution profiles are reasonably accurate and can be used for statistical analyses of solar magnetic fields, even if the fit is not always good. We also show that the ME inferences cannot be assigned to a specific atmospheric layer: different parameters sample different ranges of optical depths, and even the same parameter may trace different layers depending on the physical conditions of the atmosphere. Despite this variability, ME inversions tend to probe deeper layers in granules as compared with intergranular lanes.Comment: Accepted for publication in Astronomy and Astrophysic

    First high-resolution images of the Sun in the 2796 \AA{} Mg II k line

    Full text link
    We present the first high-resolution solar images in the Mg II k 2796 \AA{} line. The images, taken through a 4.8 \AA{} broad interference filter, were obtained during the second science flight of SUNRISE in June 2013 by the SuFI instrument. The Mg II k images display structures that look qualitatively very similar to images taken in the core of Ca II H. The Mg II images exhibit reversed granulation (or shock waves) in the internetwork regions of the quiet Sun, at intensity contrasts that are similar to those found in Ca II H. Very prominent in Mg II are bright points, both in the quiet Sun and in plage regions, particularly near disk center. These are much brighter than at other wavelengths sampled at similar resolution. Furthermore, Mg II k images also show fibril structures associated with plage regions. Again, the fibrils are similar to those seen in Ca II H images, but tend to be more pronounced, particularly in weak plage.Comment: Accepted for publication in The Astrophysical Journal Letter
    corecore