2,538 research outputs found

    Heat treating of a lamellar eutectic alloy (gamma/gamma prime + delta)

    Get PDF
    Eutectic superalloys are being developed at several laboratories for application as aircraft gas turbine airfoils. One such alloy was subjected to several heat treatments to determine if its mechanical properties could be improved. It was found that by partially dissolving the alloy at 1210 C and then aging at 900 C the tensile strength can be increased about 12 percent at temperatures up to 900 C. At 1040 C no change in tensile strength was observed. Times to rupture were measured between 760 and 1040 C and were essentially the same or greater than for as-grown material. Tensile and rupture ductility of the alloy are reduced by heat treatment. Photographs of the microstructure are shown

    Microstructural changes caused by thermal treatment and their effects on mechanical properties of a gamma/gamma prime - delta eutectic alloy

    Get PDF
    Microstructural changes due to thermal treatments of a directionally solidified gamma/gamma'-delta eutectic alloy were investigated. Aging treatments of 8 to 48 hours and ranging from 750 to 1120 C were given to the alloy in both its as directionally solidified condition and after gamma' solutioning. Aging resulted in gamma' coarsening gamma precipitates in delta, and delta and gamma'' precipitates in delta. The tensile strength was increased about 12 percent at temperatures up to 900 C by a heat treatment. Times to rupture were essentially the same or greater than for as directionally solidified material. Tensile and rupture ductility in the growth direction of the alloy were reduced by the heat treatment

    Carburization and heat treatment to cause carbide precipitation in gamma/gamma prime-delta eutectic alloys

    Get PDF
    In an attempt to improve their longitudinal shear strength, several directionally solidified eutectic alloy compositions with minor element modifications were pact, carburized, and heat treated to provide selective carbide precipitation at the cell and grain boundaries. The directionally solidified Ni-17.8 Nb-6Cr-2.5Al-3Ta (weight percent) alloy was selected for the shear strength evaluation because it showed the shallowest delta-denuded zone at the carburized surface. The carburization-carbide precipitation treatment, however, did not appear to improve the longitudinal shear strength of the alloy

    Loss of superfluidity by fermions in the boson Hubbard model on an optical lattice

    Full text link
    The experimentally observed loss of superfluidity by introducing fermions to the boson Hubbard system on an optical lattice is explained. We show that the virtual transitions of the bosons to the higher Bloch bands, coupled with the contact boson-fermion interactions of either sign, result in an effective increase of the boson on-site repulsion. If this renormalization of the on-site potential is dominant over the fermion screening of the boson interactions, the Mott insulating lobes of the Bose-Hubbard phase diagram will be enhanced for either sign of the boson-fermion interactions. We discuss implications for cold atom experiments where the expansion of the Mott lobes by fermions has been conclusively established.Comment: 4 pages, 1 eps figure, minor change

    Life cycle studies of the hexose transporter of Plasmodium species and genetic validation of their essentiality

    Get PDF
    A Plasmodium falciparum hexose transporter (PfHT) has previously been shown to be a facilitative glucose and fructose transporter. Its expression in Xenopus laevis oocytes and the use of a glucose analogue inhibitor permitted chemical validation of PfHT as a novel drug target. Following recent re-annotations of the P. falciparum genome, other putative sugar transporters have been identified. To investigate further if PfHT is the key supplier of hexose to P. falciparum and to extend studies to different stages of Plasmodium spp., we functionally analysed the hexose transporters of both the human parasite P. falciparum and the rodent parasite Plasmodium berghei using gene targeting strategies. We show here the essential function of pfht for the erythrocytic parasite growth as it was not possible to knockout pfht unless the gene was complemented by an episomal construct. Also, we show that parasites are rescued from the toxic effect of a glucose analogue inhibitor when pfht is overexpressed in these transfectants. We found that the rodent malaria parasite orthologue, P. berghei hexose transporter (PbHT) gene, was similarly refractory to knockout attempts. However, using a single cross-over transfection strategy, we generated transgenic P. berghei parasites expressing a PbHT–GFP fusion protein suggesting that locus is amenable for gene targeting. Analysis of pbht-gfp transgenic parasites showed that PbHT is constitutively expressed through all the stages in the mosquito host in addition to asexual stages. These results provide genetic support for prioritizing PfHT as a target for novel antimalarials that can inhibit glucose uptake and kill parasites, as well as unveiling the expression of this hexose transporter in mosquito stages of the parasite, where it is also likely to be critical for survival

    Closing the Gap Between Bandit and Full-Information Online Optimization: High-Probability Regret Bound

    Get PDF
    We demonstrate a modification of the algorithm of Dani et al for the online linear optimization problem in the bandit setting, which allows us to achieve an O( √{T ln T} ) regret bound in high probability against an adaptive adversary, as opposed to the in expectation result against an oblivious adversary of Dani et al. We obtain the same dependence on the dimension (n3/2)as that exhibited by Dani et al. The results of this paper rest firmly on those of Dani et al and the remarkable technique of Auer et al for obtaining high-probability bounds via optimistic estimates. This paper answers an open question: it eliminates the gap between the high-probability bounds obtained in the full-information vs bandit settings

    Purification and properties of a pea chloroplast DNA polymerase

    Full text link

    Strength Degradation of Sapphire Fibers During Pressure Casting of a Sapphire-Reinforced Ni-Base Superalloy

    Get PDF
    Transient-liquid-phase (TLP) bonding was used to fabricate a Haynes 230 Ni-base superalloy/sapphire fiber composite for high-temperature applications. Boron was used as a melting-point depressant for the Ni, to aid superalloy infiltration of the fibers. Preliminary study of the composite indicated an incomplete TLP bonding cycle. Therefore, microstructural and microchemical analyses were carried out to determine the TLP bonding mechanism. It was found that the TLP process did not occur under local thermodynamic equilibrium conditions at the solid/liquid interfaces, contrary to the primary assumption of conventional models, so a modified model for TLP bonding is proposed. The main differences between the proposed and the conventional models are: (a) the concentration of the melting-point depressant increases with time during isothermal solidification, (b) extensive boride segregation at grain boundaries and boride precipitation occurs within grains adjacent to the interlayer in the initial composite assembly, (c) because of the relatively high boron concentration in the interlayer, the TLP bonding cycle was incomplete, resulting in residual-liquid borides. To achieve ideal TLP bonding, four modifications are recommended: (i) use less boron, (ii) use finer sapphire fibers, (iii) create smaller initial grain sizes in the matrix and (iv) increase the homogenization time
    • …
    corecore