72 research outputs found

    Renin-Angiotensin System and Genetic Factors in Aneurysms

    Get PDF

    Hypertension: Renin-Angiotensin-Aldosterone System Alterations

    Get PDF
    Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension

    Methods of prediction and prevention of pre-eclampsia: systematic reviews of accuracy and effectiveness literature with economic modelling.

    Get PDF
    addresses: Department of Public Health and Epidemiology, University of Birmingham, UK.types: Journal Article; ReviewPublished version. Copyright © 2008 NIHR Health Technology Assessment ProgrammeTo investigate the accuracy of predictive tests for pre-eclampsia and the effectiveness of preventative interventions for pre-eclampsia. Also to assess the cost-effectiveness of strategies (test-intervention combinations) to predict and prevent pre-eclampsia

    Locomotion disorders and skin and claw lesions in gestating sows housed in dynamic versus static groups

    Get PDF
    Lameness and lesions to the skin and claws of sows in group housing are commonly occurring indicators of reduced welfare. Typically, these problems are more common in group housing than in individual housing systems. Group management type (dynamic versus static) and stage of gestation influence the behavior of the animals, which in turn influences the occurrence of these problems. The present study compared prevalence, incidence and mean scores of lameness and skin and claw lesions in static versus dynamic group housed sows at different stages of gestation during three consecutive reproductive cycles. A total of 10 Belgian sow herds were monitored; 5 in which dynamic groups and 5 in which static groups were utilized. All sows were visually assessed for lameness and skin lesions three times per cycle and the claws of the hind limbs were assessed once per cycle. Lameness and claw lesions were assessed using visual analogue scales. Static groups, in comparison with dynamic groups, demonstrated lower lameness scores (P<0.05) and decreased skin lesion prevalence (24.9 vs. 47.3%, P<0.05) at the end of gestation. There was no difference between treatment group regarding claw lesion prevalence with 75.5% of sows demonstrating claw lesions regardless of group management. Prevalences of lameness (22.4 vs. 8.9%, P<0.05) and skin lesions (46.6 vs. 4.4%, P<0.05) were highest during the group-housed phase compared to the individually housed phases. Although the prevalence of lameness and skin lesions did not differ three days after grouping versus at the end of the group-housing phase, their incidence peaked during the first three days after moving from the insemination stalls to the group. In conclusion, the first three days after grouping was the most risky period for lameness incidence, but there was no significant difference between static or dynamic group management

    Prediction of pre-eclampsia: a protocol for systematic reviews of test accuracy

    Get PDF
    BACKGROUND: Pre-eclampsia, a syndrome of hypertension and proteinuria, is a major cause of maternal and perinatal morbidity and mortality. Accurate prediction of pre-eclampsia is important, since high risk women could benefit from intensive monitoring and preventive treatment. However, decision making is currently hampered due to lack of precise and up to date comprehensive evidence summaries on estimates of risk of developing pre-eclampsia. METHODS/DESIGN: A series of systematic reviews and meta-analyses will be undertaken to determine, among women in early pregnancy, the accuracy of various tests (history, examinations and investigations) for predicting pre-eclampsia. We will search Medline, Embase, Cochrane Library, MEDION, citation lists of review articles and eligible primary articles and will contact experts in the field. Reviewers working independently will select studies, extract data, and assess study validity according to established criteria. Language restrictions will not be applied. Bivariate meta-analysis of sensitivity and specificity will be considered for tests whose studies allow generation of 2 × 2 tables. DISCUSSION: The results of the test accuracy reviews will be integrated with results of effectiveness reviews of preventive interventions to assess the impact of test-intervention combinations for prevention of pre-eclampsia

    A genome-wide CRISPR screen identifies a restricted set of HIV host dependency factors

    Get PDF
    Host proteins are essential for HIV entry and replication and can be important nonviral therapeutic targets. Large-scale RNA interference (RNAi)-based screens have identified nearly a thousand candidate host factors, but there is little agreement among studies and few factors have been validated. Here we demonstrate that a genome-wide CRISPR-based screen identifies host factors in a physiologically relevant cell system. We identify five factors, including the HIV co-receptors CD4 and CCR5, that are required for HIV infection yet are dispensable for cellular proliferation and viability. Tyrosylprotein sulfotransferase 2 (TPST2) and solute carrier family 35 member B2 (SLC35B2) function in a common pathway to sulfate CCR5 on extracellular tyrosine residues, facilitating CCR5 recognition by the HIV envelope. Activated leukocyte cell adhesion molecule (ALCAM) mediates cell aggregation, which is required for cell-to-cell HIV transmission. We validated these pathways in primary human CD4 + T cells through Cas9-mediated knockout and antibody blockade. Our findings indicate that HIV infection and replication rely on a limited set of host-dispensable genes and suggest that these pathways can be studied for therapeutic intervention

    Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation

    Get PDF
    Aim Thoracic aortic aneurysms are a life-threatening condition often diagnosed too late. To discover novel robust biomarkers, we aimed to better understand the molecular mechanisms underlying aneurysm formation. Methods and results In Fibulin-4R/R mice, the extracellular matrix protein Fibulin-4 is 4-fold reduced, resulting in progressive ascending aneurysm formation and early death around 3 months of age. We performed proteomics and genomics studies on Fibulin-4R/R mouse aortas. Intriguingly, we observed alterations in mitochondrial protein composition in Fibulin-4R/R aortas. Consistently, functional studies in Fibulin-4R/R vascular smooth muscle cells (VSMCs) revealed lower oxygen consumption rates, but increased acidification rates. Yet, mitochondria in Fibulin-4R/R VSMCs showed no aberrant cytoplasmic localization. We found similar reduced mitochondrial respiration in Tgfbr-1M318R/+ VSMCs, a mouse model for Loeys-Dietz syndrome (LDS). Interestingly, also human fibroblasts from Marfan (FBN1) and LDS (TGFBR2 and SMAD3) patients showed lower oxygen consumption. While individual mitochondrial Complexes I–V activities were unaltered in Fibulin-4R/R heart and muscle, these tissues showed similar decreased oxygen consumption. Furthermore, aortas of aneurysmal Fibulin-4R/R mice displayed increased reactive oxygen species (ROS) levels. Consistent with these findings, gene expression analyses revealed dysregulation of metabolic pathways. Accordingly, blood ketone levels of Fibulin-4R/R mice were reduced and liver fatty acids were decreased, while liver glycogen was increased, indicating dysregulated metabolism at the organismal level. As predicted by gene expression analysis, the activity of PGC1α, a key regulator between mitochondrial function and organismal metabolism, was downregulated in Fibulin-4R/R VSMCs. Increased TGFβ reduced PGC1α levels, indicating involvement of TGFβ signalling in PGC1α regulation. Activation of PGC1α restored the decreased oxygen consumption in Fibulin-4R/R VSMCs and improved their reduced growth potential, emphasizing the importance of this key regulator. Conclusion Our data indicate altered mitochondrial function and metabolic dysregulation, leading to increased ROS levels and altered energy production, as a novel mechanism, which may contribute to thoracic aortic aneurysm formation

    Nanostructured substrate conformation can decrease osteoblast-like cell dysfunction in simulated microgravity conditions

    No full text
    Item does not contain fulltextCells in situ are surrounded with defined structural elements formed by the nanomolecular extracellular matrix (ECM), and at the same time subjected to different mechanical stimuli arising from variety of physiological processes. In this study, using a nanotextured substrate mimicking the structural elements of the ECM and simulated microgravity, we wanted to develop a multifactorial model and understand better what guides cells in determining the morphological cell response. In our set-up, bone precursor cells from rat bone marrow were isolated and cultured on nanotextured polystyrene substrate (pitch 200 nm, depth 50 nm). Simulated microgravity was applied to the cells, using a random positioning machine (RPM). The results demonstrated that cells cultured on nanotextured substrate align parallel to the grooves and re-align significantly, but not completely, when subjected to simulated microgravity. The nanotextured substrate increased cell number and alkaline phosphatase (ALP) activity, whereas simulated microgravity decreased cells number and ALP activity. When the nanotextured substrate and simulated microgravity were combined together, the negative effect of the simulated microgravity ALP and cell number was reversed. In conclusion, absence of mechanical load in simulated microgravity has a negative effect on initial osteoblastogenesis, and nanotextured surfaces can partly reverse such a process. Copyright (c) 2012 John Wiley & Sons, Ltd

    Influence of nanostructural environment and fluid flow on osteoblast-like cell behavior: A model for cell-mechanics studies

    No full text
    Item does not contain fulltextIntroducing nanoroughness on various biomaterials has been shown to profoundly effect cell-material interactions. Similarly, physical forces act on a diverse array of cells and tissues. Particularly in bone, the tissue experiences compressive or tensile forces resulting in fluid shear stress. The current study aimed to develop an experimental setup for bone cell behavior, combining a nanometrically grooved substrate (200nm wide, 50nm deep) mimicking the collagen fibrils of the extracellular matrix, with mechanical stimulation by pulsatile fluid flow (PFF). MC3T3-E1 osteoblast-like cells were assessed for morphology, expression of genes involved in cell attachment and osteoblastogenesis and nitric oxide (NO) release. The results showed that both nanotexture and PFF did affect cellular morphology. Cells aligned on nanotexture substrate in a direction parallel to the groove orientation. PFF at a magnitude of 0.7Pa was sufficient to induce alignment of cells on a smooth surface in a direction perpendicular to the applied flow. When environmental cues texture and flow were interacting, PFF of 1.4Pa applied parallel to the nanogrooves initiated significant cellular realignment. PFF increased NO synthesis 15-fold in cells attached to both smooth and nanotextured substrates. Increased collagen and alkaline phosphatase mRNA expression was observed on the nanotextured substrate, but not on the smooth substrate. Furthermore, vinculin and bone sialoprotein were up-regulated after 1h of PFF stimulation. In conclusion, the data show that interstitial fluid forces and structural cues mimicking extracellular matrix contribute to the final bone cell morphology and behavior, which might have potential application in tissue engineering
    • …
    corecore