125 research outputs found

    Rotation misorientated graphene moire superlattices on Cu(111): classical molecular dynamics simulations and scanning tunneling microscopy studies

    Get PDF
    Graphene on copper is a system of high technological relevance, as Cu is one of the most widely used substrates for the CVD growth of graphene. However, very little is known about the details of their interaction. One approach to gain such information is studying the superlattices emerging due to the mismatch of the two crystal lattices. However, graphene on copper is a low-corrugated system making both their experimental and theoretical study highly challenging. Here, we report the observation of a new rotational Moire superlattice of CVD graphene on Cu (111), characterized by a periodicity of 1.5±0.051.5 \pm 0.05 nm and corrugation of 0.15±0.050.15 \pm 0.05 A˚\hbox{\AA} , as measured by Scanning Tunneling Microscopy. To understand the observed superlattice we have developed a newly parameterized Tersoff-potential for the graphene/Cu (111) interface fitted to nonlocal van der Waals density functional theory (DFT) calculations. The interfacial force field with time-lapsed CMD provides superlattices in good quantitative agreement with the experimental results, for a misorientation angle of 10.4±0.5,10.4 \pm 0.5,^{\circ} without any further parameter adjustment. Furthermore, the CMD simulations predict the existence of two non-equivalent high-symmetry directions of the Moir\'e pattern that could also be identified in the experimental STM images.Comment: 7 pages, 2 figures, 2 table

    Tuning the electronic structure of graphene by ion irradiation

    Full text link
    Mechanically exfoliated graphene layers deposited on SiO2 substrate were irradiated with Ar+ ions in order to experimentally study the effect of atomic scale defects and disorder on the low-energy electronic structure of graphene. The irradiated samples were investigated by scanning tunneling microscopy and spectroscopy measurements, which reveal that defect sites, besides acting as scattering centers for electrons through local modification of the on-site potential, also induce disorder in the hopping amplitudes. The most important consequence of the induced disorder is the substantial reduction in the Fermi velocity, revealed by bias-dependent imaging of electron-density oscillations observed near defect sites

    Tailoring the atomic structure of graphene nanoribbons by STM lithography

    Full text link
    The practical realization of nano-scale electronics faces two major challenges: the precise engineering of the building blocks and their assembly into functional circuits. In spite of the exceptional electronic properties of carbon nanotubes only basic demonstration-devices have been realized by time-consuming processes. This is mainly due to the lack of selective growth and reliable assembly processes for nanotubes. However, graphene offers an attractive alternative. Here we report the patterning of graphene nanoribbons (GNRs) and bent junctions with nanometer precision, well-defined widths and predetermined crystallographic orientations allowing us to fully engineer their electronic structure using scanning tunneling microscope (STM) lithography. The atomic structure and electronic properties of the ribbons have been investigated by STM and tunneling spectroscopy measurements. Opening of confinement gaps up to 0.5 eV, allowing room temperature operation of GNR-based devices, is reported. This method avoids the difficulties of assembling nano-scale components and allows the realization of complete integrated circuits, operating as room temperature ballistic electronic devices.Comment: 8 pages text, 5 figures, Nature Nanotechnology, in pres

    Indapamide-induced transient myopia with supraciliary effusion: case report.

    Get PDF
    BACKGROUND: Ingestion of sulphonamide-derived drugs has been reported to possibly have ocular side-effects. Authors aimed to present a rare case of indapamide-induced transient myopia with ciliary body edema and supraciliary effusion. CASE PRESENTATION: A 39 years old caucasian female patient presented at the Department of Neurology with headache and sudden bilateral loss of distant vision. Neurological assessment and cranial CT scans were unremarkable. For her hypertension, twice a day bisoprolol 2.5 mg and once a day indapamide 1.5 mg tablets were prescribed several days before. At her presenting, ophthalmic findings were as follows: visual acuity 0.08-7.25Dsph = 1.0 and 0.06-7.25Dsph = 1.0; IOP 25 mmHg and 24 mmHg, anterior chamber depth (ACD) 2.32 mm and 2.49 mm, lens thickness (L) 4.02 mm and 4.09 mm in the right and the left eye, respectively. By means of ultrasound biomicroscopy (UBM), thickened (720 / 700 micron) and detached ciliary body, its forward movement (ciliary body-cornea angle 108[prime] / 114[prime]) and forward rotated ciliary processes were seen. Angle opening distance (AOD500) were 300 / 314 microns. By the following days, the myopia gradually diminished, and a week after her first symptoms, her uncorrected visual acuity was 1.0 in both eyes, IOP 13 mmHg and 17 mmHg, ACD 3.68 mm and 3.66 mm, L 3.78 mm and 3.81 mm in the right and the left eye, respectively. Ciliary body edema and detachment disappeared (ciliary body thickness 225 / 230 micron), both of the ciliary body-cornea angle 134[prime] / 140[prime] and the AOD500 (650 / 640 microns) increased. At this point, the patient admitted that she had stopped taking indapamide two days before. CONCLUSIONS: Our case report is the third one in the literature to present indapamide-induced transient myopia, and the first to employ UBM for describing the characteristics of this rare condition. According to the findings, authors suggest that both ciliary muscle contraction and ciliary body edema may play role in the pathomechanism. UBM seems to be a useful tool in the differential diagnosis of acute myopia. Further, authors wish to draw attention to one of the potential adverse effects of this drug which was not listed by its package insert

    Electron Wave Function in Armchair Graphene Nanoribbons

    Full text link
    By using analytical solution of a tight-binding model for armchair nanoribbons, it is confirmed that the solution represents the standing wave formed by intervalley scattering and that pseudospin is invariant under the scattering. The phase space of armchair nanoribbon which includes a single Dirac singularity is specified. By examining the effects of boundary perturbations on the wave function, we suggest that the existance of a strong boundary potential is inconsistent with the observation in a recent scanning tunneling microscopy. Some of the possible electron-density superstructure patterns near a step armchair edge located on top of graphite are presented. It is demonstrated that a selection rule for the G band in Raman spectroscopy can be most easily reproduced with the analytical solution.Comment: 7 pages, 4 figure

    Towards Graphene Nanoribbon-based Electronics

    Full text link
    The successful fabrication of single layer graphene has greatly stimulated the progress of the research on graphene. In this article, focusing on the basic electronic and transport properties of graphene nanoribbons (GNRs), we review the recent progress of experimental fabrication of GNRs, and the theoretical and experimental investigations of physical properties and device applications of GNRs. We also briefly discuss the research efforts on the spin polarization of GNRs in relation to the edge states.Comment: 9pages,10figure

    Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy

    Full text link
    Scanning tunneling microscopy (STM) gives us the opportunity to map the surface of functionalized carbon nanotubes in an energy resolved manner and with atomic precision. But this potential is largely untapped, mainly due to sample stability issues which inhibit reliable measurements. Here we present a simple and straightforward solution that makes away with this difficulty, by incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a few layer graphene - nanotube composite. This enabled us to measure energy resolved tunneling conductance maps on the nanotubes, which shed light on the level of doping, charge transfer between tube and functional groups and the dependence of defect creation or functionalization on crystallographic orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene, STM, CITS, ST

    Directed self-organization of graphene nanoribbons on SiC

    Full text link
    Realization of post-CMOS graphene electronics requires production of semiconducting graphene, which has been a labor-intensive process. We present tailoring of silicon carbide crystals via conventional photolithography and microelectronics processing to enable templated graphene growth on 4H-SiC{1-10n} (n = 8) crystal facets rather than the customary {0001} planes. This allows self-organized growth of graphene nanoribbons with dimensions defined by those of the facet. Preferential growth is confirmed by Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) measurements, and electrical characterization of prototypic graphene devices is presented. Fabrication of > 10,000 top-gated graphene transistors on a 0.24 cm2 SiC chip demonstrates scalability of this process and represents the highest density of graphene devices reported to date.Comment: 13 pages, 5 figure

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    Observation of competing, correlated ground states in the flat band of rhombohedral graphite

    Get PDF
    In crystalline solids, the interactions of charge and spin can result in a variety of emergent quantum ground states, especially in partially filled, topological flat bands such as Landau levels or in “magic angle” graphene layers. Much less explored is rhombohedral graphite (RG), perhaps the simplest and structurally most perfect condensed matter system to host a flat band protected by symmetry. By scanning tunneling microscopy, we map the flat band charge density of 8, 10, 14, and 17 layers and identify a domain structure emerging from a competition between a sublattice antiferromagnetic insulator and a gapless correlated paramagnet. Our density matrix renormalization group calculations explain the observed features and demonstrate that the correlations are fundamentally different from graphene-based magnetism identified until now, forming the ground state of a quantum magnet. Our work establishes RG as a platform to study many-body interactions beyond the mean-field approach, where quantum fluctuations and entanglement dominate
    corecore