26 research outputs found

    Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Ixodes ricinus </it>is the main vector in Europe of human-pathogenic Lyme borreliosis (LB) spirochaetes, the tick-borne encephalitis virus (TBEV) and other pathogens of humans and domesticated mammals. The results of a previous 1994 questionnaire, directed at people living in Central and North Sweden (Svealand and Norrland) and aiming to gather information about tick exposure for humans and domestic animals, suggested that <it>Ixodes ricinus </it>ticks had become more widespread in Central Sweden and the southern part of North Sweden from the early 1980s to the early 1990s. To investigate whether the expansion of the tick's northern geographical range and the increasing abundance of ticks in Sweden were still occurring, in 2009 we performed a follow-up survey 16 years after the initial study.</p> <p>Methods</p> <p>A questionnaire similar to the one used in the 1994 study was published in Swedish magazines aimed at dog owners, home owners, and hunters. The questionnaire was published together with a popular science article about the tick's biology and role as a pathogen vector in Sweden. The magazines were selected to get information from people familiar with ticks and who spend time in areas where ticks might be present.</p> <p>Results</p> <p>Analyses of data from both surveys revealed that during the near 30-year period from the early 1980s to 2008, <it>I. ricinus </it>has expanded its distribution range northwards. In the early 1990s ticks were found in new areas along the northern coastline of the Baltic Sea, while in the 2009 study, ticks were reported for the first time from many locations in North Sweden. This included locations as far north as 66°N and places in the interior part of North Sweden. During this 16-year period the tick's range in Sweden was estimated to have increased by 9.9%. Most of the range expansion occurred in North Sweden (north of 60°N) where the tick's coverage area doubled from 12.5% in the early 1990s to 26.8% in 2008. Moreover, according to the respondents, the abundance of ticks had increased markedly in LB- and TBE-endemic areas in South (Götaland) and Central Sweden.</p> <p>Conclusions</p> <p>The results suggest that <it>I. ricinus </it>has expanded its range in North Sweden and has become distinctly more abundant in Central and South Sweden during the last three decades. However, in the northern mountain region <it>I. ricinus </it>is still absent. The increased abundance of the tick can be explained by two main factors: First, the high availability of large numbers of important tick maintenance hosts, i.e., cervids, particularly roe deer (<it>Capreolus capreolus</it>) during the last three decades. Second, a warmer climate with milder winters and a prolonged growing season that permits greater survival and proliferation over a larger geographical area of both the tick itself and deer. High reproductive potential of roe deer, high tick infestation rate and the tendency of roe deer to disperse great distances may explain the range expansion of <it>I. ricinus </it>and particularly the appearance of new TBEV foci far away from old TBEV-endemic localities. The geographical presence of LB in Sweden corresponds to the distribution of <it>I. ricinus</it>. Thus, LB is now an emerging disease risk in many parts of North Sweden. Unless countermeasures are undertaken to keep the deer populations, particularly <it>C. capreolus </it>and <it>Dama dama</it>, at the relatively low levels that prevailed before the late 1970s - especially in and around urban areas where human population density is high - by e.g. reduced hunting of red fox (<it>Vulpes vulpes</it>) and lynx (<it>Lynx lynx</it>), the incidences of human LB and TBE are expected to continue to be high or even to increase in Sweden in coming decades.</p

    Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing evidence for a latitudinal and altitudinal shift in the distribution range of <it>Ixodes ricinus</it>. The reported incidence of tick-borne disease in humans is on the rise in many European countries and has raised political concern and attracted media attention. It is disputed which factors are responsible for these trends, though many ascribe shifts in distribution range to climate changes. Any possible climate effect would be most easily noticeable close to the tick's geographical distribution limits. In Norway- being the northern limit of this species in Europe- no documentation of changes in range has been published. The objectives of this study were to describe the distribution of <it>I. ricinus </it>in Norway and to evaluate if any range shifts have occurred relative to historical descriptions.</p> <p>Methods</p> <p>Multiple data sources - such as tick-sighting reports from veterinarians, hunters, and the general public - and surveillance of human and animal tick-borne diseases were compared to describe the present distribution of <it>I. ricinus </it>in Norway. Correlation between data sources and visual comparison of maps revealed spatial consistency. In order to identify the main spatial pattern of tick abundance, a principal component analysis (PCA) was used to obtain a weighted mean of four data sources. The weighted mean explained 67% of the variation of the data sources covering Norway's 430 municipalities and was used to depict the present distribution of <it>I. ricinus</it>. To evaluate if any geographical range shift has occurred in recent decades, the present distribution was compared to historical data from 1943 and 1983.</p> <p>Results</p> <p>Tick-borne disease and/or observations of <it>I. ricinus </it>was reported in municipalities up to an altitude of 583 metres above sea level (MASL) and is now present in coastal municipalities north to approximately 69°N.</p> <p>Conclusion</p> <p><it>I. ricinus </it>is currently found further north and at higher altitudes than described in historical records. The approach used in this study, a multi-source analysis, proved useful to assess alterations in tick distribution.</p

    Effects of an invasive forest pathogen on abundance of ticks and their vertebrate hosts in a California Lyme disease focus

    Get PDF
    Invasive species, including pathogens, can have important effects on local ecosystems, including indirect consequences on native species. This study focuses on the effects of an invasive plant pathogen on a vertebrate community and Ixodes pacificus, the vector of the Lyme disease pathogen (Borrelia burgdorferi) in California. Phytophthora ramorum, the causative agent of sudden oak death, is a non-native pathogen killing trees in California and Oregon. We conducted a multi-year study using a gradient of SOD-caused disturbance to assess the impact on the dusky-footed woodrat (Neotoma fuscipes) and the deer mouse (Peromyscus maniculatus), two reservoir hosts of B. burgdorferi, as well as the impact on the Columbian black-tailed deer (Odocoileus hemionus columbianus) and the western fence lizard (Sceloporus occidentalis), both of which are important hosts for I. pacificus but are not pathogen reservoirs. Abundances of P. maniculatus and S. occidentalis were positively correlated with greater SOD disturbance, whereas N. fuscipes abundance was negatively correlated. We did not find a change in space use by O. hemionus. Our data show that SOD has a positive impact on the density of nymphal ticks, which is expected to increase the risk of human exposure to Lyme disease all else being equal. A positive correlation between SOD disturbance and the density of nymphal ticks was expected given increased abundances of two important hosts: deer mice and western fence lizards. However, further research is needed to integrate the direct effects of SOD on ticks, for example via altered abiotic conditions with host-mediated indirect effects

    Borrelioses, agentes e vetores

    Full text link

    Borrelia burgdorferi Sensu Lato and Ehrlichia spp. in Ixodes Ticks from Southern Norway

    No full text
    We report the results of a study of the prevalence of Ehrlichia and Borrelia species in 341 questing Ixodes ricinus ticks from two locations in southern Norway. The prevalences of Borrelia burgdorferi sensu lato and Ehrlichia spp. were, respectively, 16 and 11.5% at site 1 and 17 and 6% at site 2. Prevalence and species composition of Borrelia and Ehrlichia varied with location and date of collection. The dominant Borrelia species at both sites was Borrelia afzelii, followed by Borrelia burgdorferi sensu stricto. Borrelia garinii was found in only a single tick. The dominant member of the Ehrlichia group was a recently described Ehrlichia-like organism related to the monocytic ehrlichiae. Variants of Ehrlichia phagocytophila and the agent of human granulocytic ehrlichiosis were also found. The highest prevalences for B. afzelii, B. burgdorferi sensu stricto, and the Ehrlichia-like organism were observed in May. B. afzelii was most prevalent in females, less prevalent in nymphs, and least prevalent in males, while the prevalence of Ehrlichia was highest in nymphs, lower in females, and least in males. Double infections with B. afzelii and B. burgdorferi sensu stricto and with B. afzelii and the Ehrlichia-like organism were significantly overrepresented. Tick densities were highest in May, when densities of more than 200 ticks/100 m(2) were observed, and declined during the summer months to densities as low as 20 ticks/100 m(2). We conclude that estimates of the prevalence of tick-borne bacteria are sensitive to the choice of date and site for collection of ticks. This is the first study of tick-borne Borrelia and Ehrlichia in Norway and the lowest reported B. garinii prevalence in Northern Europe. The prevalence of the Ehrlichia-like organism is described for the first time in questing ticks
    corecore