1,671 research outputs found

    Young and intermediate-age massive star clusters

    Full text link
    An overview of our current understanding of the formation and evolution of star clusters is given, with main emphasis on high-mass clusters. Clusters form deeply embedded within dense clouds of molecular gas. Left-over gas is cleared within a few million years and, depending on the efficiency of star formation, the clusters may disperse almost immediately or remain gravitationally bound. Current evidence suggests that a few percent of star formation occurs in clusters that remain bound, although it is not yet clear if this fraction is truly universal. Internal two-body relaxation and external shocks will lead to further, gradual dissolution on timescales of up to a few hundred million years for low-mass open clusters in the Milky Way, while the most massive clusters (> 10^5 Msun) have lifetimes comparable to or exceeding the age of the Universe. The low-mass end of the initial cluster mass function is well approximated by a power-law distribution, dN/dM ~ M^{-2}, but there is mounting evidence that quiescent spiral discs form relatively few clusters with masses M > 2 x 10^5 Msun. In starburst galaxies and old globular cluster systems, this limit appears to be higher, at least several x 10^6 Msun. The difference is likely related to the higher gas densities and pressures in starburst galaxies, which allow denser, more massive giant molecular clouds to form. Low-mass clusters may thus trace star formation quite universally, while the more long-lived, massive clusters appear to form preferentially in the context of violent star formation.Comment: 21 pages, 3 figures. To appear as invited review article in a special issue of the Phil. Trans. Royal Soc. A: Ch. 9 "Star clusters as tracers of galactic star-formation histories" (ed. R. de Grijs). Fully peer reviewed. PDFLaTeX, requires rspublic.cls style fil

    The Inverse Shapley Value Problem

    Full text link
    For ff a weighted voting scheme used by nn voters to choose between two candidates, the nn \emph{Shapley-Shubik Indices} (or {\em Shapley values}) of ff provide a measure of how much control each voter can exert over the overall outcome of the vote. Shapley-Shubik indices were introduced by Lloyd Shapley and Martin Shubik in 1954 \cite{SS54} and are widely studied in social choice theory as a measure of the "influence" of voters. The \emph{Inverse Shapley Value Problem} is the problem of designing a weighted voting scheme which (approximately) achieves a desired input vector of values for the Shapley-Shubik indices. Despite much interest in this problem no provably correct and efficient algorithm was known prior to our work. We give the first efficient algorithm with provable performance guarantees for the Inverse Shapley Value Problem. For any constant \eps > 0 our algorithm runs in fixed poly(n)(n) time (the degree of the polynomial is independent of \eps) and has the following performance guarantee: given as input a vector of desired Shapley values, if any "reasonable" weighted voting scheme (roughly, one in which the threshold is not too skewed) approximately matches the desired vector of values to within some small error, then our algorithm explicitly outputs a weighted voting scheme that achieves this vector of Shapley values to within error \eps. If there is a "reasonable" voting scheme in which all voting weights are integers at most \poly(n) that approximately achieves the desired Shapley values, then our algorithm runs in time \poly(n) and outputs a weighted voting scheme that achieves the target vector of Shapley values to within error $\eps=n^{-1/8}.

    The Hubble Constant

    Full text link
    Considerable progress has been made in determining the Hubble constant over the past two decades. We discuss the cosmological context and importance of an accurate measurement of the Hubble constant, and focus on six high-precision distance-determination methods: Cepheids, tip of the red giant branch, maser galaxies, surface brightness fluctuations, the Tully-Fisher relation and Type Ia supernovae. We discuss in detail known systematic errors in the measurement of galaxy distances and how to minimize them. Our best current estimate of the Hubble constant is 73 +/-2 (random) +/-4 (systematic) km/s/Mpc. The importance of improved accuracy in the Hubble constant will increase over the next decade with new missions and experiments designed to increase the precision in other cosmological parameters. We outline the steps that will be required to deliver a value of the Hubble constant to 2% systematic uncertainty and discuss the constraints on other cosmological parameters that will then be possible with such accuracy.Comment: To be published in Annual Reviews of Astronomy and Astrophysics, Vol. 48, 2010, consisting of 79 pages, 13 figures, 2 table

    Bargaining Power and Value Sharing in Distribution Networks: A Cooperative Game Theory Approach

    Get PDF
    This paper illustrates a methodology for analyzing bargaining games on network markets, by means of numerical models that can be calibrated with real data. Economic incentives to join or to expand a network depend on how the network surplus is being distributed, which in turn depends on a variety of factors: position of each agent (e.g., a country) in a specific network, its reliability in the cooperation scheme (e.g., geo-political stability), existence of market distortions and availability of outside options (e.g., alternative energy sources). This study is aimed at presenting a game theory methodology that can be applied to real world cases, having the potential to shed light on several political economy issues. The methodology is presented and illustrated with application to a fictitious network structure. The method is based on a two-stage pro- cess: first, a network optimization model is used to generate payoff values under different coalitions and network structures; a second model is subsequently employed to identify cooperative game solutions. Any change in the network structure entails both a variation in the overall welfare level and in the distribution of surplus among agents, as it affects their relative bargaining power. Therefore, expected costs and benefits, at the aggregate as well as at the individual level, can be compared to assess the economic viability of any investment in network infrastructure. A number of model variants and extensions are also considered: changing demand, exogenous instability factors, market distortions, externalities and outside options

    Sharing Supermodular Costs

    Get PDF
    We study cooperative games with supermodular costs. We show that supermodular costs arise in a variety of situations; in particular, we show that the problem of minimizing a linear function over a supermodular polyhedron—a problem that often arises in combinatorial optimization—has supermodular optimal costs. In addition, we examine the computational complexity of the least core and least core value of supermodular cost cooperative games. We show that the problem of computing the least core value of these games is strongly NP-hard and, in fact, is inapproximable within a factor strictly less than 17/16 unless P = NP. For a particular class of supermodular cost cooperative games that arises from a scheduling problem, we show that the Shapley value—which, in this case, is computable in polynomial time—is in the least core, while computing the least core value is NP-hard.National Science Foundation (U.S.) (DMI-0426686

    Constraint on the Assembly and Dynamics of Galaxies. II. Properties of Kiloparsec-Scale Clumps in Rest-Frame Optical Emission of z ~ 2 Star-Forming Galaxies

    Get PDF
    We study the properties of luminous stellar "clumps" identified in deep, high-resolution Hubble Space Telescope NIC2/F160W imaging at 1.6 μm of six z ~ 2 star-forming galaxies with existing near-infrared integral field spectroscopy from SINFONI at the Very Large Telescope. Individual clumps contribute ~0.5%-15% of the galaxy-integrated rest-frame ≈5000 Å emission, with median of ≈2%; the total contribution of clump light ranges from 10% to 25%. The median intrinsic clump size and stellar mass are ~1 kpc and ~10^9 M_☉, in the ranges for clumps identified in rest-UV or line emission in other studies. The clump sizes and masses in the subset of disks are broadly consistent with expectations for clump formation through gravitational instabilities in gas-rich, turbulent disks given the host galaxies' global properties. By combining the NIC2 data with Advanced Camera for Surveys (ACS)/F814W imaging available for one source, and adaptive-optics-assisted SINFONI Hα data for another, we infer modest color, M/L, and stellar age variations within each galaxy. In these two objects, sets of clumps identified at different wavelengths do not fully overlap; NIC2-identified clumps tend to be redder/older than ACS- or Hα-identified clumps without rest-frame optical counterparts. There is evidence for a systematic trend of older ages at smaller galactocentric radii among the clumps, consistent with scenarios where inward migration of clumps transports material toward the central regions. From constraints on a bulge-like component at radii ≾1-3 kpc, none of the five disks in our sample appears to contain a compact massive stellar core, and we do not discern a trend of bulge stellar mass fraction with stellar age of the galaxy. Further observations are necessary to probe the buildup of stellar bulges and the role of clumps in this process

    Rest-Frame Optical Spectra of Three Strongly Lensed Galaxies at z~2

    Full text link
    We present Keck II NIRSPEC rest-frame optical spectra for three recently discovered lensed galaxies: the Cosmic Horseshoe (z = 2.38), the Clone (z = 2.00), and SDSS J090122.37+181432.3 (z = 2.26). The boost in signal-to-noise ratio (S/N) from gravitational lensing provides an unusually detailed view of the physical conditions in these objects. A full complement of high S/N rest-frame optical emission lines is measured, spanning from rest-frame 3600 to 6800AA, including robust detections of fainter lines such as H-gamma, [SII]6717,6732, and in one instance [NeII]3869. SDSS J090122.37+181432.3 shows evidence for AGN activity, and therefore we focus our analysis on star-forming regions in the Cosmic Horseshoe and the Clone. For these two objects, we estimate a wide range of physical properties, including star-formation rate (SFR), metallicity, dynamical mass, and dust extinction. In all respects, the lensed objects appear fairly typical of UV-selected star-forming galaxies at z~2. The Clone occupies a position on the emission-line diagnostic diagram of [OIII]/H-beta vs. [NII]/H-alpha that is offset from the locations of z~0 galaxies. Our new NIRSPEC measurements may provide quantitative insights into why high-redshift objects display such properties. From the [SII] line ratio, high electron densities (~1000 cm^(-3)) are inferred compared to local galaxies, and [OIII]/[OII] line ratios indicate higher ionization parameters compared to the local population. Building on previous similar results at z~2, these measurements provide further evidence (at high S/N) that star-forming regions are significantly different in high-redshift galaxies, compared to their local counterparts (abridged).Comment: 16 pages, 8 figures. Accepted for publication in the Astrophysical Journa

    Am empirical comparison of the performance of classical power indices

    Get PDF
    Power indices are general measures of the relative voting power of individual members of a voting body. They are useful in helping understand and design voting bodies particularly those which employ weighted voting, in which different members having different numbers of votes. It is well known that in such bodies a member's voting power, in the sense of their capacity to affect the outcomes of votes called, rarely corresponds to the actual number of votes allocated to him. Many voting bodies for which this is an important consideration exist: examples include international organisations (notably the World Bank, the IMF, the European Union), the US presidential Electoral College and corporations in which votes are proportionate to stockholdings. Two classical power indices dominate the literature: the Shapley-Shubik index and the Banzhaf index (also known by other names). Both are based on the idea that a member's power depends on the relative number of times they can change a coalition from losing to winning by joining it and adding their vote. They may be defined in probabilistic terms as the probability of being able to swing the result of a vote, where all possible outcomes are taken as equiprobable. The indices differ however in the way they count voting coalitions. In probabilistic terms they use different coalition models and therefore differ in precisely what is meant by equiprobable outcomes. The indices have been used in a number of empirical applications but their relative performance has remained an open question for many years, a factor, which has hindered the wider acceptance of the approach. Where both the indices have been used for the same case, they have often given different results, sometimes substantially so, and theoretical studies of their properties have not been conclusive. There is therefore a need for comparative testing of their relative performance in practical contexts. Very little work of this type has been done however for a number of reasons: lack of independent indicators of power in actual voting bodies with which to compare them, difficulties in obtaining consistent data on a voting body over time with sufficient variation in the disposition of votes among members of actual legislatures and the lack of independent criteria against which the results of the indices may be judged. It has also been hampered to some extent by lack of easily available algorithms for computing the indices in large games. This paper assesses the indices against a set of reasonable criteria in terms of shareholder voting power and the control of the corporation in a large cross section of British companies. Each company is a separate voting body and there is much variation in the distribution of voting shares among them. Moreover reasonable criteria exist against which to judge the indices. New algorithms for the Shapley-Shubik and Banzhaf indices are applied to detailed data on beneficial ownership of 444 large UK companies without majority control. Because some of the data is missing, both finite and oceanic games of shareholder voting are studied to overcome this problem. The results, judged against these criteria, are unfavorable to the Shapley-Shubik index and suggest that the Banzhaf index much better reflects the variations in the power of shareholders between companies as the weights of shareholder blocks vary

    False-Name Manipulation in Weighted Voting Games is Hard for Probabilistic Polynomial Time

    Full text link
    False-name manipulation refers to the question of whether a player in a weighted voting game can increase her power by splitting into several players and distributing her weight among these false identities. Analogously to this splitting problem, the beneficial merging problem asks whether a coalition of players can increase their power in a weighted voting game by merging their weights. Aziz et al. [ABEP11] analyze the problem of whether merging or splitting players in weighted voting games is beneficial in terms of the Shapley-Shubik and the normalized Banzhaf index, and so do Rey and Rothe [RR10] for the probabilistic Banzhaf index. All these results provide merely NP-hardness lower bounds for these problems, leaving the question about their exact complexity open. For the Shapley--Shubik and the probabilistic Banzhaf index, we raise these lower bounds to hardness for PP, "probabilistic polynomial time", and provide matching upper bounds for beneficial merging and, whenever the number of false identities is fixed, also for beneficial splitting, thus resolving previous conjectures in the affirmative. It follows from our results that beneficial merging and splitting for these two power indices cannot be solved in NP, unless the polynomial hierarchy collapses, which is considered highly unlikely

    Regression games

    Get PDF
    The solution of a TU cooperative game can be a distribution of the value of the grand coalition, i.e. it can be a distribution of the payo (utility) all the players together achieve. In a regression model, the evaluation of the explanatory variables can be a distribution of the overall t, i.e. the t of the model every regressor variable is involved. Furthermore, we can take regression models as TU cooperative games where the explanatory (regressor) variables are the players. In this paper we introduce the class of regression games, characterize it and apply the Shapley value to evaluating the explanatory variables in regression models. In order to support our approach we consider Young (1985)'s axiomatization of the Shapley value, and conclude that the Shapley value is a reasonable tool to evaluate the explanatory variables of regression models
    corecore