10 research outputs found
Functional Implications of Novel Human Acid Sphingomyelinase Splice Variants
BACKGROUND: Acid sphingomyelinase (ASM) hydrolyses sphingomyelin and generates the lipid messenger ceramide, which mediates a variety of stress-related cellular processes. The pathological effects of dysregulated ASM activity are evident in several human diseases and indicate an important functional role for ASM regulation. We investigated alternative splicing as a possible mechanism for regulating cellular ASM activity. METHODOLOGY/PRINCIPAL FINDINGS: We identified three novel ASM splice variants in human cells, termed ASM-5, -6 and -7, which lack portions of the catalytic- and/or carboxy-terminal domains in comparison to full-length ASM-1. Differential expression patterns in primary blood cells indicated that ASM splicing might be subject to regulatory processes. The newly identified ASM splice variants were catalytically inactive in biochemical in vitro assays, but they decreased the relative cellular ceramide content in overexpression studies and exerted a dominant-negative effect on ASM activity in physiological cell models. CONCLUSIONS/SIGNIFICANCE: These findings indicate that alternative splicing of ASM is of functional significance for the cellular stress response, possibly representing a mechanism for maintaining constant levels of cellular ASM enzyme activity
Niemann-Pick disease type C
Niemann-Pick C disease (NP-C) is a neurovisceral atypical lysosomal lipid storage disorder with an estimated minimal incidence of 1/120 000 live births. The broad clinical spectrum ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease. The neurological involvement defines the disease severity in most patients but is typically preceded by systemic signs (cholestatic jaundice in the neonatal period or isolated spleno- or hepatosplenomegaly in infancy or childhood). The first neurological symptoms vary with age of onset: delay in developmental motor milestones (early infantile period), gait problems, falls, clumsiness, cataplexy, school problems (late infantile and juvenile period), and ataxia not unfrequently following initial psychiatric disturbances (adult form). The most characteristic sign is vertical supranuclear gaze palsy. The neurological disorder consists mainly of cerebellar ataxia, dysarthria, dysphagia, and progressive dementia. Cataplexy, seizures and dystonia are other common features. NP-C is transmitted in an autosomal recessive manner and is caused by mutations of either the NPC1 (95% of families) or the NPC2 genes. The exact functions of the NPC1 and NPC2 proteins are still unclear. NP-C is currently described as a cellular cholesterol trafficking defect but in the brain, the prominently stored lipids are gangliosides. Clinical examination should include comprehensive neurological and ophthalmological evaluations. The primary laboratory diagnosis requires living skin fibroblasts to demonstrate accumulation of unesterified cholesterol in perinuclear vesicles (lysosomes) after staining with filipin. Pronounced abnormalities are observed in about 80% of the cases, mild to moderate alterations in the remainder ("variant" biochemical phenotype). Genotyping of patients is useful to confirm the diagnosis in the latter patients and essential for future prenatal diagnosis. The differential diagnosis may include other lipidoses; idiopathic neonatal hepatitis and other causes of cholestatic icterus should be considered in neonates, and conditions with cerebellar ataxia, dystonia, cataplexy and supranuclear gaze palsy in older children and adults. Symptomatic management of patients is crucial. A first product, miglustat, has been granted marketing authorization in Europe and several other countries for specific treatment of the neurological manifestations. The prognosis largely correlates with the age at onset of the neurological manifestations
The brain penetrant PPARÎł agonist leriglitazone restores multiple altered pathways in models of X-linked adrenoleukodystrophy
X-linked adrenoleukodystrophy (X-ALD), a potentially fatal neurometabolic disorder with no effective pharmacological treatment, is characterized by clinical manifestations ranging from progressive spinal cord axonopathy [adrenomyeloneuropathy (AMN)] to severe demyelination and neuroinflammation (cerebral ALD-cALD), for which molecular mechanisms are not well known. Leriglitazone is a recently developed brain penetrant full PPARÎł agonist that could modulate multiple biological pathways relevant for neuroinflammatory and neurodegenerative diseases, and particularly for X-ALD. We found that leriglitazone decreased oxidative stress, increased adenosine 5'-triphosphate concentration, and exerted neuroprotective effects in primary rodent neurons and astrocytes after very long chain fatty acid-induced toxicity simulating X-ALD. In addition, leriglitazone improved motor function; restored markers of oxidative stress, mitochondrial function, and inflammation in spinal cord tissues from AMN mouse models; and decreased the neurological disability in the EAE neuroinflammatory mouse model. X-ALD monocyte-derived patient macrophages treated with leriglitazone were less skewed toward an inflammatory phenotype, and the adhesion of human X-ALD monocytes to brain endothelial cells decreased after treatment, suggesting the potential of leriglitazone to prevent the progression to pathologically disrupted blood-brain barrier. Leriglitazone increased myelin debris clearance in vitro and increased myelination and oligodendrocyte survival in demyelination-remyelination in vivo models, thus promoting remyelination. Last, leriglitazone was clinically tested in a phase 1 study showing central nervous system target engagement (adiponectin increase) and changes on inflammatory biomarkers in plasma and cerebrospinal fluid. The results of our study support the use of leriglitazone in X-ALD and, more generally, in other neuroinflammatory and neurodegenerative conditions
Moving towards effective therapeutic strategies for Neuronal Ceroid Lipofuscinosis
The Neuronal Ceroid Lipofuscinoses (NCLs) are a family of autosomal recessive neurodegenerative disorders that annually affect 1:100,000 live births worldwide. This family of diseases results from mutations in one of 14 different genes that share common clinical and pathological etiologies. Clinically, the diseases are subcategorized into infantile, late-infantile, juvenile and adult forms based on their age of onset. Though the disease phenotypes may vary in their age and order of presentation, all typically include progressive visual deterioration and blindness, cognitive impairment, motor deficits and seizures. Pathological hallmarks of NCLs include the accumulation of storage material or ceroid in the lysosome, progressive neuronal degeneration and massive glial activation. Advances have been made in genetic diagnosis and counseling for families. However, comprehensive treatment programs that delay or halt disease progression have been elusive. Current disease management is primarily targeted at controlling the symptoms rather than “curing” the disease. Recognizing the growing need for transparency and synergistic efforts to move the field forward, this review will provide an overview of the therapeutic approaches currently being pursued in preclinical and clinical trials to treat different forms of NCL as well as provide insight to novel therapeutic approaches in development for the NCLs