2,575 research outputs found
Microscopic description of fission in neutron-rich plutonium isotopes with the Gogny-D1M energy density functional
The most recent parametrization D1M of the Gogny energy density functional is
used to describe fission in the isotopes Pu. We resort to the
methodology introduced in our previous studies [Phys. Rev. C \textbf{88},
054325 (2013) and Phys. Rev. C \textbf {89}, 054310 (2014)] to compute the
fission paths, collective masses and zero point quantum corrections within the
Hartree-Fock-Bogoliubov framework. The systematics of the spontaneous fission
half-lives t, masses and charges of the fragments in Plutonium isotopes
is analyzed and compared with available experimental data. We also pay
attention to isomeric states, the deformation properties of the fragments as
well as to the competition between the spontaneous fission and -decay
modes. The impact of pairing correlations on the predicted t values is
demonstrated with the help of calculations for Pu in which the
pairing strengths of the Gogny-D1M energy density functional are modified by 5
and 10 , respectively. We further validate the use of the D1M
parametrization through the discussion of the half-lives in Fm. Our
calculations corroborate that, though the uncertainties in the absolute values
of physical observables are large, the Gogny-D1M Hartree-Fock-Bogoliubov
framework still reproduces the trends with mass and/or neutron numbers and
therefore represents a reasonable starting point to describe fission in heavy
nuclear systems from a microscopic point of view.Comment: 14 pages, 11 figures. arXiv admin note: text overlap with
arXiv:1312.722
Microscopic description of fission in Uranium isotopes with the Gogny energy density functional
The most recent parametrizations D1S, D1N and D1M of the Gogny energy density
functional are used to describe fission in the isotopes U. Fission
paths, collective masses and zero point quantum corrections, obtained within
the constrained Hartree-Fock-Bogoliubov approximation, are used to compute the
systematics of the spontaneous fission half-lives , the masses
and charges of the fission fragments as well as their intrinsic shapes. The
Gogny-D1M parametrization has been benchmarked against available experimental
data on inner and second barrier heights, excitation energies of the fission
isomers and half-lives in a selected set of Pu, Cm, Cf, Fm, No, Rf, Sg, Hs and
Fl nuclei. It is concluded that D1M represents a reasonable starting point to
describe fission in heavy and superheavy nuclei. Special attention is also paid
to understand the uncertainties in the predicted values arising
from the different building blocks entering the standard semi-classical
Wentzel-Kramers-Brillouin formula. Although the uncertainties are large, the
trend with mass or neutron numbers are well reproduced and therefore the theory
still has predictive power. In this respect, it is also shown that
modifications of a few per cent in the pairing strength can have a significant
impact on the collective masses leading to uncertainties in the
values of several orders of magnitude.Comment: 22 pages, 17 figures; Minor modifications to previous versio
Microscopic description of fission in nobelium isotopes with the Gogny-D1M energy density functional
Constrained mean-field calculations, based on the Gogny-D1M energy density
functional, have been carried out to describe fission in the isotopes
No. The even-even isotopes have been considered within the standard
Hartree-Fock-Bogoliobov (HFB) framework while for the odd-mass ones the Equal
Filling Approximation (HFB-EFA) has been employed. Ground state quantum numbers
and deformations, pairing energies, one-neutron separation energies, inner and
outer barrier heights as well as fission isomer excitation energies are given.
Fission paths, collective masses and zero-point quantum vibrational and
rotational corrections are used to compute the systematic of the spontaneous
fission half-lives t both for even-even and odd-mass nuclei.
Though there exists a strong variance of the predicted fission rates with
respect to the details involved in their computation, it is shown that both the
specialization energy and the pairing quenching effects, taken into account
within the self-consistent HFB-EFA blocking procedure, lead to larger
t values in odd-mass nuclei as compared with their even-even
neighbors. Alpha decay lifetimes have also been computed using a
parametrization of the Viola-Seaborg formula. The high quality of the Gogny-D1M
functional regarding nuclear masses leads to a very good reproduction of
values and consequently of lifetimes.Comment: 13 pages, 9 figure
A variational approach to approximate particle number projection with effective forces
Kamlah's second order method for approximate particle number projection is
applied for the first time to variational calculations with effective forces.
High spin states of normal and superdeformed nuclei have been calculated with
the finite range density dependent Gogny force for several nuclei. Advantages
and drawbacks of the Kamlah second order method as compared to the
Lipkin-Nogami recipe are thoroughly discussed. We find that the Lipkin-Nogami
prescription occasionally may fail to find the right energy minimum in the
strong pairing regime and that Kamlah's second order approach, though providing
better results than the LN one, may break down in some limiting situations.Comment: 16 pages, 8 figure
Remarks on the use of projected densities in the density dependent part of Skyrme or Gogny functionals
I discuss the inadequacy of the "projected density" prescription to be used
in density dependent forces/functionals when calculations beyond mean field are
pursued. The case of calculations aimed at the symmetry restoration of mean
fields obtained with effective realistic forces of the Skyrme or Gogny type is
considered in detail. It is shown that at least for the restoration of spatial
symmetries like rotations, translations or parity the above prescription yields
catastrophic results for the energy that drive the intrinsic wave function to
configurations with infinite deformation, preventing thereby its use both in
projection after and before variation.Comment: To be published as a contribution to J. Phys G, Special Issue, Focus
Section: Open Problems in Nuclear Structur
Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force
Collective quadrupole and octupole states are described in a series of Sm and
Gd isotopes within the framework of the interacting boson model (IBM), whose
Hamiltonian parameters are deduced from mean field calculations with the Gogny
energy density functional. The link between both frameworks is the
() potential energy surface computed within the
Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The
diagonalization of the IBM Hamiltonian provides excitation energies and
transition strengths of an assorted set of states including both positive and
negative parity states. The resultant spectroscopic properties are compared
with the available experimental data and also with the results of the
configuration mixing calculations with the Gogny force within the generator
coordinate method (GCM). The structure of excited states and its
connection with double octupole phonons is also addressed. The model is shown
to describe the empirical trend of the low-energy quadrupole and octupole
collective structure fairly well, and turns out to be consistent with GCM
results obtained with the Gogny force.Comment: 17 pages, 12 figures, 4 table
Shape evolution and the role of intruder configurations in Hg isotopes within the interacting boson model based on a Gogny energy density functional
The interacting boson model with configuration mixing, with parameters
derived from the self-consistent mean-field calculation employing the
microscopic Gogny energy density functional, is applied to the systematic
analysis of the low-lying structure in Hg isotopes. Excitation energies,
electromagnetic transition rates, deformation properties, and ground-state
properties of the Hg nuclei are obtained by mapping the microscopic
deformation energy surface onto the equivalent IBM Hamiltonian in the boson
condensate. These results point to the overall systematic trend of the
transition from the near spherical vibrational state in lower-mass Hg nuclei
close to Hg, onset of intruder prolate configuration as well as the
manifest prolate-oblate shape coexistence around the mid-shell nucleus
Hg, weakly oblate deformed structure beyond Hg up to the
spherical vibrational structure toward the near semi-magic nucleus Hg,
as observed experimentally. The quality of the present method in the
description of the complex shape dynamics in Hg isotopes is examined.Comment: 19 pages, 14 figures, revised version including new results and
discussions, title changed, accepted for publication in Phys. Rev.
- …
