30 research outputs found

    Lab-on-Chip for Testing Myelotoxic Effect of Drugs and Chemicals

    Get PDF
    This paper was presented at the 4th Micro and Nano Flows Conference (MNF2014), which was held at University College, London, UK. The conference was organised by Brunel University and supported by the Italian Union of Thermofluiddynamics, IPEM, the Process Intensification Network, the Institution of Mechanical Engineers, the Heat Transfer Society, HEXAG - the Heat Exchange Action Group, and the Energy Institute, ASME Press, LCN London Centre for Nanotechnology, UCL University College London, UCL Engineering, the International NanoScience Community, www.nanopaprika.eu.In the last twenty years, one of the main goals in the drug discovery field has been the development of reliable in vitro models. In particular, in 2006 the European Centre for the Validation of Alternative Methods (ECVAM) has approved the Colony forming Unit-Granulocytes-Macrophages (CFU-GM) test, which is the first and currently unique test applied to evaluate the myelotoxicity of xenobiotics in vitro. The present work aimed at miniaturizing this in vitro assay by developing and validating a Lab-on-Chip (LoC) platform consisting of a high number of bioreactor chambers with screening capabilities in a high-throughput regime

    Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells

    Get PDF
    A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy

    A method to generate perfusable physiologic-like vascular channels within a liver-on-chip model

    Get PDF
    The human vasculature is essential in organs and tissues for the transport of nutrients, metabolic waste products, and the maintenance of homeostasis. The integration of vessels in in vitro organs-on-chip may, therefore, improve the similarity to the native organ microenvironment, ensuring proper physiological functions and reducing the gap between experimental research and clinical outcomes. This gap is particularly evident in drug testing and the use of vascularized models may provide more realistic insights into human responses to drugs in the pre-clinical phases of the drug development pipeline. In this context, different vascularized liver models have been developed to recapitulate the architecture of the hepatic sinusoid, exploiting either porous membranes or bioprinting techniques. In this work, we developed a method to generate perfusable vascular channels with a circular cross section within organs-on-chip without any interposing material between the parenchyma and the surrounding environment. Through this technique, vascularized liver sinusoid-on-chip systems with and without the inclusion of the space of Disse were designed and developed. The recapitulation of the Disse layer, therefore, a gap between hepatocytes and endothelial cells physiologically present in the native liver milieu, seems to enhance hepatic functionality (e.g., albumin production) compared to when hepatocytes are in close contact with endothelial cells. These findings pave the way to numerous further uses of microfluidic technologies coupled with vascularized tissue models (e.g., immune system perfusion) as well as the integration within multiorgan-on-chip settings

    GZMKhigh CD8+ T effector memory cells are associated with CD15high neutrophil abundance in non-metastatic colorectal tumors and predict poor clinical outcome.

    Get PDF
    CD8(+) T cells are a major prognostic determinant in solid tumors, including colorectal cancer (CRC). However, understanding how the interplay between different immune cells impacts on clinical outcome is still in its infancy. Here, we describe that the interaction of tumor infiltrating neutrophils expressing high levels of CD15 with CD8(+) T effector memory cells (T(EM)) correlates with tumor progression. Mechanistically, stromal cell-derived factor-1 (CXCL12/SDF-1) promotes the retention of neutrophils within tumors, increasing the crosstalk with CD8(+) T cells. As a consequence of the contact-mediated interaction with neutrophils, CD8(+) T cells are skewed to produce high levels of GZMK, which in turn decreases E-cadherin on the intestinal epithelium and favors tumor progression. Overall, our results highlight the emergence of GZMK(high) CD8(+) T(EM) in non-metastatic CRC tumors as a hallmark driven by the interaction with neutrophils, which could implement current patient stratification and be targeted by novel therapeutics

    Microfluidic Biofabrication of 3D Multicellular Spheroids by Modulation of Non-geometrical Parameters

    Get PDF
    Three-dimensional (3D) cell spheroids are being increasingly applied in many research fields due to their enhanced biological functions as compared to conventional two-dimensional (2D) cultures. 3D cell spheroids can replicate tissue functions, which enables their use both as in vitro models and as building blocks in tissue biofabrication approaches. In this study, we developed a perfusable microfluidic platform suitable for robust and reproducible 3D cell spheroid formation and tissue maturation. The geometry of the device was optimized through computational fluid dynamic (CFD) simulations to improve cell trapping. Experimental data were used in turn to generate a model able to predict the number of trapped cells as a function of cell concentration, flow rate, and seeding time. We demonstrated that tuning non-geometrical parameters it is possible to control the size and shape of 3D cell spheroids generated using articular chondrocytes (ACs) as cellular model. After seeding, cells were cultured under perfusion at different flow rates (20, 100, and 500 μl/min), which induced the formation of conical and spherical spheroids. Wall shear stress values on cell spheroids, computed by CFD simulations, increased accordingly to the flow rate while remaining under the chondroprotective threshold in all configurations. The effect of flow rate on cell number, metabolic activity, and tissue-specific matrix deposition was evaluated and correlated with fluid velocity and shear stress distribution. The obtained results demonstrated that our device represents a helpful tool to generate stable 3D cell spheroids which can find application both to develop advanced in vitro models for the study of physio-pathological tissue maturation mechanisms and to obtain building blocks for the biofabrication of macrotissues

    Modeling in vitro osteoarthritis phenotypes in a vascularized bone model based on a bone-marrow derived mesenchymal cell line and endothelial cells

    Get PDF
    The subchondral bone and its associated vasculature play an important role in the onset of osteoarthritis (OA). Integration of different aspects of the OA environment into multi-cellular and complex human, in vitro models is therefore needed to properly represent the pathology. In this study, we exploited a mesenchymal stromal cell line/endothelial cell co-culture to produce an in vitro human model of vascularized osteogenic tissue. A cocktail of inflammatory cytokines, or conditioned medium from mechanically-induced OA engineered microcartilage, was administered to this vascularized bone model to mimic the inflamed OA environment, hypothesizing that these treatments could induce the onset of specific pathological traits. Exposure to the inflammatory factors led to increased network formation by endothelial cells, reminiscent of the abnormal angiogenesis found in OA subchondral bone, demineralization of the constructs, and increased collagen production, signs of OA related bone sclerosis. Furthermore, inflammation led to augmented expression of osteogenic (alkaline phosphatase (ALP) and osteocalcin (OCN)) and angiogenic (vascular endothelial growth factor (VEGF)) genes. The treatment, with a conditioned medium from the mechanically-induced OA engineered microcartilage, also caused increased demineralization and expression of ALP, OCN, ADAMTS5, and VEGF; however, changes in network formation by endothelial cells were not observed in this second case, suggesting a possible different mechanism of action in inducing OA-like phenotypes. We propose that this vascularized bone model could represent a first step for the in vitro study of bone changes under OA mimicking conditions and possibly serve as a tool in testing anti-OA drugs
    corecore