537 research outputs found

    Sensitization of renal carcinoma cells to TRAIL-induced apoptosis by rocaglamide and analogs

    Get PDF
    Rocaglamide has been reported to sensitize several cell types to TRAIL-induced apoptosis. In recent years, advances in synthetic techniques have led to generation of novel rocaglamide analogs. However, these have not been extensively analyzed as TRAIL sensitizers, particularly in TRAIL-resistant renal cell carcinoma cells. Evaluation of rocaglamide and analogs identified 29 compounds that are able to sensitize TRAIL-resistant ACHN cells to TRAIL-induced, caspase-dependent apoptosis with sub-µM potency which correlated with their potency as protein synthesis inhibitors and with loss of cFLIP protein in the same cells. Rocaglamide alone induced cell cycle arrest, but not apoptosis. Rocaglates averaged 4–5-fold higher potency as TRAIL sensitizers than as protein synthesis inhibitors suggesting a potential window for maximizing TRAIL sensitization while minimizing effects of general protein synthesis inhibition. A wide range of other rocaglate effects (e.g. on JNK or RAF-MEK-ERK signaling, death receptor levels, ROS, ER stress, eIF4E phosphorylation) were assessed, but did not contribute to TRAIL sensitization. Other than a rapid loss of MCL-1, rocaglates had minimal effects on mitochondrial apoptotic pathway proteins. The identification of structurally diverse/mechanistically similar TRAIL sensitizing rocaglates provides insights into both rocaglate structure and function and potential further development for use in RCC-directed combination therapy.This project has been funded in whole or in part with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract No. HHSN261200800001E. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. This research was supported [in part] by the Intramural Research Program of NIH, Frederick. National Lab, Center for Cancer Research. Research performed at Boston University was supported in part by NIH R35 GM118173. Work at the BU-CMD is supported by R24 GM111625. (HHSN261200800001E - National Cancer Institute, National Institutes of Health; Intramural Research Program of NIH, Frederick. National Lab, Center for Cancer Research; R35 GM118173 - NIH; R24 GM111625)Published versio

    Chemical dynamics of triacetylene formation and implications to the synthesis of polyynes in Titan's atmosphere

    Get PDF
    For the last four decades, the role of polyynes such as diacetylene (HCCCCH) and triacetylene (HCCCCCCH) in the chemical evolution of the atmosphere of Saturn's moon Titan has been a subject of vigorous research. These polyacetylenes are thought to serve as an UV radiation shield in planetary environments; thus, acting as prebiotic ozone, and are considered as important constituents of the visible haze layers on Titan. However, the underlying chemical processes that initiate the formation and control the growth of polyynes have been the least understood to date. Here, we present a combined experimental, theoretical, and modeling study on the synthesis of the polyyne triacetylene (HCCCCCCH) via the bimolecular gas phase reaction of the ethynyl radical (CCH) with diacetylene (HCCCCH). This elementary reaction is rapid, has no entrance barrier, and yields the triacetylene molecule via indirect scattering dynamics through complex formation in a single collision event. Photochemical models of Titan's atmosphere imply that triacetylene may serve as a building block to synthesize even more complex polyynes such as tetraacetylene (HCCCCCCCCH)

    Modeling the Enceladus plume--plasma interaction

    Full text link
    We investigate the chemical interaction between Saturn's corotating plasma and Enceladus' volcanic plumes. We evolve plasma as it passes through a prescribed H2O plume using a physical chemistry model adapted for water-group reactions. The flow field is assumed to be that of a plasma around an electrically-conducting obstacle centered on Enceladus and aligned with Saturn's magnetic field, consistent with Cassini magnetometer data. We explore the effects on the physical chemistry due to: (1) a small population of hot electrons; (2) a plasma flow decelerated in response to the pickup of fresh ions; (3) the source rate of neutral H2O. The model confirms that charge exchange dominates the local chemistry and that H3O+ dominates the water-group composition downstream of the Enceladus plumes. We also find that the amount of fresh pickup ions depends heavily on both the neutral source strength and on the presence of a persistent population of hot electrons.Comment: 10 pages, 1 table, 2 figure

    The population of propellers in Saturn's A Ring

    Full text link
    We present an extensive data set of ~150 localized features from Cassini images of Saturn's Ring A, a third of which are demonstrated to be persistent by their appearance in multiple images, and half of which are resolved well enough to reveal a characteristic "propeller" shape. We interpret these features as the signatures of small moonlets embedded within the ring, with diameters between 40 and 500 meters. The lack of significant brightening at high phase angle indicates that they are likely composed primarily of macroscopic particles, rather than dust. With the exception of two features found exterior to the Encke Gap, these objects are concentrated entirely within three narrow (~1000 km) bands in the mid-A Ring that happen to be free from local disturbances from strong density waves. However, other nearby regions are similarly free of major disturbances but contain no propellers. It is unclear whether these bands are due to specific events in which a parent body or bodies broke up into the current moonlets, or whether a larger initial moonlet population has been sculpted into bands by other ring processes.Comment: 31 pages, 10 figures; Accepted at A
    corecore